

	

COMPUTER	MEMORY	UNITS	

This short chapter introduces some interesting topics that help to explain numeric HTML character
entities – basically why characters have numerical codes that uniquely identify them. It also covers
the basics of fundamental computer memory storage units like bits, bytes, kilobytes, and so forth. It
would be a crime to get out of an entry-level computer science course without being introduced to
these concepts.

1. Bits And Bytes ... 1
2. Character Encodings .. 2
3. KiloBytes, MegaBytes, GigaBytes, Etc .. 3

1. BITS AND BYTES

The term bit is short for binary digit. Humans think of binary digits as 0 and 1. Indeed, binary
numbers such as 10101100 are composed of 0s and 1s. Most people realize that computers store
information in binary, but don’t realize that 0s and 1s are for just humans. Computer hardware needs a
physical representation. For example, on a magnetic hard drive, small sectors either have a negative or
positive charge. On a silicone computer chip, a capacitor can have two different levels of electrical
charge. These are physical things that represent two-state conditions, but humans conveniently think
of the two distinct states as 0 and 1. When a computer stores an 8-digit binary number like 10101100,
it’s physically storing a sequence of 8 plus/minus charges on a magnetic plate, or a sequence of 8 two-
state electrical charges in capacitors on a silicon chip.
 A byte is a sequence of 8 bits. In modern computers, a byte is the smallest unit of storage that can
have a distinct address. Hence, virtually all forms of computer storage is measured in bytes.
Computer storage is often called memory in the sense that the computer “remembers” data over a long
period of time. How much memory is a byte? Another way to ask that is how many different things
can 1 byte represent?
 The hardest way to answer that question would simply be to start writing down all the distinct
bytes: 00000001, 00000010, 00000100, …, 10000000, 00000011, 00000101, …. If you do that, and
are very careful not to leave any out, you will count 256 distinct bytes. That might be good fun on a
rainy day, but there are much better ways. For example, since there are 8 digits in a byte, and there are
exactly 2 possibilities for each digit, the multiplication principle indicates that there are
2x2x2x2x2x2x2x2 = 28 = 256 distinct possibilities.

2	

Yet another way to deduce that is to convert 8-digit binary numbers into base 10 numbers. Base 10
numbers are the ones we use every day. In base 10, each digit (from right to left) represents increasing
powers of 10: 100 = 1, 101 = 10, 102 = 100, 103 = 1000, and so forth. It works the same way in binary,
expect the base is 2. Going from right to left in base 2, the digits are valued as 20 = 1, 21 = 2, 22 = 4,
23 = 8, 24 = 16, and so forth. Clearly the smallest byte is 00000000 which converts to 0 in base 10
since there are 0 of each power of 2. The largest byte is 11111111 which converts to 255 in base 10
since there is 1 of each power of 2 (1+2+4+8+16+32+64+128 = 255). So bytes cover all numbers
from 0-255 when converted into base 10. That’s is 256 distinct bytes.
 We have concluded (in 3 different ways) that there are 256 distinct bytes. That means if each
distinct byte represents something, then 1 byte can hold 256 different “somethings.” Depending upon
what the computer storage is being used for, those 256 different somethings might be 256 different
keyboard characters, 256 different colors, or simply the numbers from 0-255. Recall that IP addresses
are of the form 164.168.21.170, where each of the numbers must be in the range 0-255. That means
each number is 1 byte, and IP addresses are a 4-byte addressing system!

2. CHARACTER ENCODINGS

An example provided with this Lesson introduced HTML Character Entities such as which is
a non-breaking space (software won’t soft-wrap around it). Character entities can also be expressed
using a numerical code. For example, both and create exactly the same non-breaking
space character, and both © and © create the exact same copyright symbol ã. It is then
natural to wonder what it means for characters to have numerical codes in addition to names like
© that are easier for humans to remember. The answer to that explains why bytes are the
fundamental units used to describe the storage capacity of most modern computer devices, including
hard drives.

When you type a keyboard character, it has to be converted into a number to store it in computer
memory. Consider the following examples for the capital A and lower case a characters.

Character Code Binary (byte)
 A ¬® 65 ¬® 01000001
 a ¬® 97 ¬® 01100001

When you type a character, the computer looks up its numerical code, and then converts that into
binary for storage. Suppose, for example that you type a capital A and it is stored as the byte shown
above as part of a text file. Now suppose that text file is sent to a different computer. It’s absolutely
imperative that the other computer converts character #65 back into a cap A. That is, if two different
computers think character #65 is two different characters, then they would not be able to share text
data because it would get scrambled.

The American Standard Code for Information Interchange (ASCII), was created in the 1960s to
standardize storage of characters most commonly found on English language keyboards in the USA.
The ASCII character encoding ensured that text typed on one computer would be interpreted as the
same characters on another computer as long as they were both ASCII compliant. For example, a byte
stored as 01000001 in text data would always be translated to the cap A character regardless of the
computer system reading the data.

Original ASCII standardized 128 characters, thus requiring only 7 bits. But most computer
systems stored data in byte sized chunks (8 bits), allowing for a total of 256 characters. The 256-
character encodings (128 ASCII characters plus 128 additional characters) were usually called
Extended ASCII. By the 1980s, there were a few different Extended ASCII character encodings with

 3	

differences only among the 128 characters that extended ASCII. Since Microsoft was the dominant
desktop operating system, their Extended ASCII character encoding was widely used.

There is a graphic on the course web site that shows a typical Extended ASCII character encoding.
Characters #0-31 are mostly non-printing characters that are mostly obsolete today, except for
characters like the horizontal tab (#9). Characters #32-127 are the original ASCII characters where
you can find the lower and cap A codes provided above, for example. Characters #128-255 are mostly
European language characters and other useful symbols like ã. This facilitated use of keyboards
configured for European languages, for example. Notice that #160 is the non-breaking space (HTML
character entity), but original ASCII also provided a normal, breaking space as character #32.
Most people are surprised to learn that there are two distinct blank space characters with different
functionality.

In the 1990s, a new standard called Unicode Transformation Format was introduced. It’s usually
just called Unicode or UTF-8. UTF-8 is backwards compatible with ASCII, but can encode over 1
million different characters, including characters from Arabic and Hebrew, and the symbolic
languages like Chinese, Korean, and Japanese which can have 10s of thousands of characters each. It
even includes ancient characters from languages like Babylonian Cuneiform and Egyptian
Hieroglyphs, and new ones like Emojis where new ones are still being created. UTF-8 still stores
ASCII characters in one byte, but UTF-8 uses up to 4 bytes per character for larger character numbers.

You can find some examples of character encodings for some of the larger numbers in the HTML
character entities example included with this Lesson. The numbers for the HTML character entities
are the same as the UTF-8 character numbers. If you are an astute observer, you may have noticed
that the basic HTML 5 document provided by W3Schools.com has the following line in the head
section: <meta charset="UTF-8"> This tells the browser that the bytes saved in the HTML file
represent UTF-8 characters. That means HTML files are plain text files – the bytes in the file
represent UTF-8 character codes. Many types of computer files are not plain text files, like
spreadsheets, powerpoint, music, video, etc. Those are sometimes called binary blobs because it’s
much harder to describe what the bytes in the file represent.

This section explains why bytes are the fundamental memory unit. Hard drives, computer RAM and cell data
usage, just to name a few, are still all measured in bytes. This stems from the early 8-bit character encodings
such as ASCII. Since keyboard characters were stored as bytes, it made sense to measure computer memory
in bytes – basically how many keyboard characters could be stored.
 In contrast, network throughput speeds (data transfer rates) are generally measured in bits per second. For
example, the speed of the Internet service you buy from an ISP, or the speed of a Wi-FI network will be listed
in bits per second (not bytes). Basically, that’s a measure of how fast raw data can be moved.

3. KILOBYTES, MEGABYTES, GIGABYTES, ETC

The International System of Units defines several prefixes that were historically derived from the
Greek language. The ones you are most likely familiar are kilo (1,000 = 103), mega (1,000,000 = 106),
and giga (1,000,000,000 = 109). Using these prefixes, a KiloByte (KB) is 1,000 bytes, a MegaByte
(MB) is 1,000 KiloBytes, and a GigaByte (GB) is 1,000 MegaBytes. When the context is clear, people
often use K instead of KB, M instead of MB, and so forth.
 It can be hard to wrap your brain around what it means to talk about millions (mega) and billions
(giga) of bytes. There are even larger prefixes like tera, peta, and exa that have become more relevant
as computer storage capacities have gotten larger, and the amount of data the world produces has
skyrocketed. In terms of computer memory capacity, the larger prefixes were mostly not even
relevant not that long ago, like in the 1990s when the WWW was invented.

4	

There is a principle called Moore’s Law, named after a scientist that co-founded the Intel
corporation that’s famous for making computer processors. Very loosely stated, Moore’s law says that
the amount of data computer chips can process doubles about every 2 years as new chips get smaller
and faster. The same principle has roughly predicted the growth of computer memory capacity as
well. This principle has held for the most part since 1975, although it has begun to slow down in
recent years. The next big breakthrough that will enable smaller devices to hold radically more data is
likely to be quantum computing, which is basically computing at the atomic level.

The table below lists a few examples so that you can wrap your brain around the order of
magnitude involved with each prefix. Advances in technology that have roughly followed Moore’s
law have increasingly made prefixes like tera and peta more relevant. The Internet of Things has even
made the exa prefix relevant in today’s world.

Unit Very Rough Estimates to Show Order or Magnitude
KiloByte
103

(thousand)

• IP Packet – 1.5K
• This PDF file – 150K
• Typical web Page (HTML file + Graphics) – a few K to a few hundred K

MegaByte
106

(million)

• MP3 file – about 1M per minute
• Uncompressed Digital Picture from Typical Smartphone – 5M to 10M
• Traditional CD (Compact Disk) – 700M

GigaByte
109
(billion)

• DVD Disk Capacity (per side) or Standard HD Movie – 5G
• Ultra HD Movie (4K pixel resolution) – 20G
• Typical Cell Phone Hard Drive – 32G to 128G
• Typical Laptop Hard Drive – 500G

TeraByte
1012

(trillion)

• Typical External Hard Drive – 1T to 5T
• Annual Data Generated by Hubble Space Telescope – 10T
• Amount of Video Data Uploaded to YouTube Per Day in 2016 – 24T

PetaByte
1015

(quadrillion)

• Standard HD Movie that’s 50 Years Long (need lots of popcorn) – 1P
• Human Brain Capacity – 2P or 3P (based on common estimates)
• Amount of Data Processed by Google Every Day – 50P
• Entire Written Work of Mankind from Beginning of Written History (All Languages) – 50P

Exabyte
1018
(quintillion)

• Internet Traffic Per Day – 3E
• Total Estimated Data held by Google – 15E
• Total Computer Data on Saved on Earth – A few thousand E (that’s a few ZettaBytes)

In computing, things are generally done in powers of 2. You know, that binary thing. Technically
speaking, a KiloByte was originally 1024 = 210 bytes. The prefix Kilo was used for convenience since
1000 is a reasonably close approximation to 1024. So technically speaking, a MegaByte was
originally 1024 K, and a GigaByte was 1024 M, and so forth. This was a source of confusion for a
long time since these suffixes are used for many other purposes, like a KiloMeter. In non-computer
contexts, Kilo always means 1000, and the larger prefixes are always exact powers of 10.
 To alleviate confusion, the International System of Units introduced some new units around the
year 2000. For example, a KibbiByte is 1024 bytes, a Mebibyte is 1024 KibbiBytes, a Gibibyte is 1024
Mebibytes, and so forth. These odd-sounding prefixes are used in certain contexts in computer
science. But when you buy computer equipment, or talk about computer storage in every day
conversation, a KiloByte means 1000 bytes, and so forth. So for example, if your phone has 64G of
memory, then that’s the common use of Giga and means 64,000,000,000 bytes (not GibiBytes).

