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Abstract—Image classification and content-based image re-
trieval (CBIR) are important problems in the field of computer
vision. In recent years, convolutional neural networks (CNNs)
have become the tool of choice for building state-of-the-art im-
age classification systems. In this paper, we propose novel mid-
level representations involving the use of a pre-trained CNN for
feature extraction and use them to solve both the classification
and the retrieval problems on a dataset of building images with
different architectural styles. We experimentally establish our
intuitive understanding of the CNN features from different
layers, and also combine the proposed representations with
several different pre-processing and classification techniques
to form a novel architectural image classification and retrieval
system.

1. Introduction

Content-based Image Retrieval (CBIR) is a very im-
portant Computer Vision problem being addressed by re-
searchers around the world today. CBIR is the task of
searching for similar images in a large image database using
a user-provided image as a query. The concept of similarity
is context-dependent. For example, in the context of a build-
ing images dataset, similar images may mean buildings hav-
ing the same purpose as the query, or it may mean images
of the same architectural style. Hence the retrieval problem
is non-trivial and rather challenging for several domains.
Also, CBIR may be used for classification if the images
in the dataset are already labelled with different predefined
category labels. These category labels may be based on some
low-level features such as color, texture or shape, but more
often, they are based on more high-level features such as
semantic description, activity, or as in our case, architectural
style. In the past few years, convolutional neural networks
(CNNs) have been among the best-performing tools used
by vision researchers for a variety of classification tasks.
The initial use of CNNs became popular by the availabil-
ity of large labelled image datasets such as ImageNet [1]
and Places [2] and the large improvement in object and
scene classification results obtained thereafter [3]. Later,
researchers have adapted the network of [3] for different

Figure 1. Images retrieved using the query on the left and raw CNN features
from the last and intermediate layers of a pre-trained CNN. Note that
the pre-processing vastly improves the retrieval results in the intermediate
layers. Green borders indicate images from the same style category as the
query and red borders indicate those from a different category.

tasks by modifying the architecture or tweaking the network
parameters. Convolutional neural networks typically contain
multiple convolution and pooling layers followed by a few
fully connected layers and a soft-max classifier. It has been
demonstrated in [4], [5] and [6] that using the output from
the last fully connected layer of pre-trained CNNs such
as [7] with linear classifiers such as support vector machines
(SVMs), yields better classification performance.

Architectural style classification and retrieval is an
emerging research area in computer vision, which has gained



Figure 2. The proposed image representation uses features from intermediate layers of a pre-trained CNN. These features are used for retrieval and
classification. The process is described in detail in Section 2

attention in the recent years [8]. It has many potential
applications in the tourism industry, historical analysis of
building styles, cinema and theater set design, architecture
education, geo-localization, etc. Each architectural style pos-
sesses a set of unique and distinguishing features [9] some of
which, like the facade and its decorations, enable automatic
classification using computer vision methods. Architectural
styles are not independently and identically distributed, and
the styles evolve as a gradual process over time which
may lead to complicated relationships between different
architectural styles. A comparative evaluation of different
conventional classification techniques by [8] for architec-
tural style classification clearly suggests the need for more
powerful visual features for architectural style classification
and retrieval tasks. This is our primary motivation in select-
ing this problem for the current work.

In the presented work we first propose a novel scene
representation and associated similarity measure, which
exploits evidence about the presence of different visual
patterns in the various architectural styles by using the
outputs of the intermediate layer features of a pre-trained
CNN for classification and retrieval of architecture images
from the large Architectural Style Dataset [8]. Using a
CNN pre-trained on ImageNet [3] we consider the response
maps computed at several different layers to compare their
performance. We demonstrate that these features are more
effective for the retrieval task and also for the architectural
style classification task. Next, we use a novel pre-processing
technique to parse the image into sky and non-sky regions to
minimize the effect of sky-region features in the retrieval and
classification results and endow the proposed representation
only by visual cues from the buildings in the scene.

Finally, we also provide an in-depth visualization and
discussion on the suitability and effectiveness of the dif-
ferent layer features for an architecture dataset. The intu-
ition behind the proposed approach is that in initial layers
of the CNN, the encoded information is more low-level
and spatially localized, and as we move up the layers,
the information becomes more and more semantic. In the
fully connected layers the information is fully semantic
and free from stylistic details or spatial fluctuations. Hence,
the lower-layer features may be more ideal for recognizing
attributes of buildings rather than the class of ”buildings” as
a whole. Figure 1 shows the different nearest neighbors to a
query image for features extracted from different layers of
the pre-trained CNN.

2. Proposed Method

The proposed method uses a pre-trained CNN for ex-
tracting features at various stages and compares their perfor-
mance for both architectural style classification and retrieval
problems. We use features from several different layers for
image representation and compare the classification results
from three different classifiers. We also create a novel pre-
processing step to remove the sky from the images. These
steps are discussed in detail in subsections 2.1, 2.2 and 2.3.

2.1. Feature Extraction

We use the OverFeat image features extractor [7] for
feature extraction. OverFeat is based on a convolutional
network similar to [3] trained on the 1000-category Ima-
geNet dataset [1]. We do not use the classifier included with
OverFeat as it classifies into one of the ImageNet categories.
We use the ’fast’ network of OverFeat which uses input
images of size 231 × 231 and has 21 layers divided into 8
stages before the final softmax output stage. The first six
of these stages consist of convolution and pooling layers
and the last two stages are fully connected layers. OverFeat
can be used to extract the features from any of these layers
and use them for representation. In the proposed method we
extract features following each of the first six stages as well
as the layers in between the stages, and use them with our
own classifiers. This is shown in Figure 2.

Figure 3. The pre-processing of input images for removing the sky pixels
to make the representation more robust. The process is explained in
Section 2.2



2.2. Pre-processing

One of the problems that we observed in our early
retrieval experiments was that for nearest-neighbor compar-
isons based on the raw CNN features from most layers, the
retrieved images were mostly images of pyramids. This can
be observed in Figure 1. In the classification experiments
using the KNN classifier, this caused all queries to be
classified into the Ancient Egyptian Architecture class. On
back-tracking through the network and visualizing what part
of image contributed to each feature, we found that the sky
formed a significant portion of most images in the database.
Since images of the Ancient Egyptian Architecture category
are mostly pyramids with bright blue sky, they were being
retrieved as close matches.

To overcome this problem we designed a sky detector
that tries to predict the pixels representing the sky and blocks
them out before feature extraction. We combine three cues
for detecting the sky, namely saliency, position and color.

For generating the saliency cue, we use a difference
of Gaussian (DoG) operation at multiple scales to detect
interest points within the image. Wherever we find an in-
terest point at some scale, we turn that pixel white (the
value 1) and we turn other pixels black (the value 0). This
creates a response map with the interest points marked. We
create such response maps for eight scales and eventually
add them. The sum image is normalized to [0,1] and each
pixel now has a score between 0 and 1 based on the presence
of interest points at different scales at that pixel. The area
with very few interest points is potentially the sky.

For the position cue, we use a subset of the images in
the dataset to learn the position of the buildings in several
categories. The assumption made here is that, these training
images are representative of the position that buildings
occupy in most images of the dataset. We manually mark
the position of the buildings in these images and then, using
the position information from these representative images
from different categories, we fit two 1-dimensional Gaussian
kernels over the image, one for each axis. The horizontal
Gaussian kernel is centered at the horizontal mid-point of
the image while the vertical one is centered on the bottom
edge. We take the maximum of the values of the two kernels
at any pixel to get a measure of the probability of that pixel
being part of the building.

For the color cue, the average of the red and the green
values subtracted from the blue value is used as a ’blueness’
measure. Once normalized, this cue predicts the location
of sky pixels with some accuracy, although this cue is not
completely accurate for glass buildings that reflect the sky.
The complement of this cue is taken as a ’non-sky’ score for
each pixel. Next, we multiply the three scores from the three
cues and normalize the product in the range [0,1]. Finally,
we multiply the original image with this normalized product
to get the skyless image ready for feature extraction. This
process is demonstrated in Figure 3.

It should be noted that the sky removal step is only
important for the unsupervised retrieval and classification
steps (KNN classification). When we train classifiers using

Figure 4. Sample images from the 25 categories of the Architectural Style
dataset.

training samples from each class (SVM and EFM-KNN
classification), the classifiers can offset the effect of the sky
being present in all classes and they perform better without
the pre-processing step.

2.3. Classification

2.3.1. The K-Nearest Neighbor Classifier. The simplest
classifier that we use is the K-nearest neighbor (KNN)
classifier. This is an unsupervised classification technique.
All the images are ranked by their distance from the query
image, and the closest k matches are used to determine the
class label for the query. For this classifier, a training step is
not needed as the neighbors are taken from a set of images
whose class is known. For all of the results shown in this
paper, the value of K is 5.

2.3.2. The EFM-KNN Classifier. Principal component
analysis, or PCA, which is the optimal feature extraction
method in the sense of the mean-square-error, derives the
most expressive features for signal and image represen-
tation [10]. However, they are not the optimum features
for classification. Fisher’s Linear Discriminant (FLD), a
popular method in pattern recognition, first applies PCA for
dimensionality reduction and then discriminant analysis for
feature extraction.

The FLD method, however, often leads to overfitting
when implemented in an inappropriate PCA space. To im-
prove the generalization performance of the FLD method, a
proper balance between two criteria should be maintained:
the energy criterion for adequate image representation and
the magnitude criterion for eliminating the small-valued
trailing eigenvalues of the within-class scatter matrix. The
Enhanced Fisher Model (EFM) improves the generalization
capability of the FLD method by decomposing the FLD
procedure into a simultaneous diagonalization of the within-
class and between-class scatter matrices [11]. The simulta-
neous diagonalization demonstrates that during whitening
the eigenvalues of the within-class scatter matrix appear in
the denominator. As shown by [11], the small eigenvalues
tend to encode noise, and they cause the whitening step to



Figure 5. Some results from the retrieval task. For each query, the top row shows 5 nearest neighbors retrieved by the raw-CNN representation. The lower
row shows the retrieval set obtained after pre-processing.

fit for misleading variations, leading to poor generalization
performance. To enhance performance, the EFM method
preserves a proper balance between the need that the se-
lected eigenvalues account for most of the spectral energy
of the raw data (for representational adequacy), and the
requirement that the eigenvalues of the within-class scatter
matrix (in the reduced PCA space) are not too small (for
better generalization performance).

After dimensionality reduction and feature extraction by
EFM, we use the KNN classifier on the reduced feature
vector for the final classification. The EFM feature ex-
traction process followed by nearest neighbor classification
has been shown to perform well with a large number of
classes [12], [13].

2.3.3. The Linear SVM Classifier. The Support Vector
Machine (SVM) minimizes the risk functional in terms of
both the empirical risk and the confidence interval [14].
SVM is very popular and has been applied extensively
for pattern classification, regression, and density estimation
since it displays a good generalization performance. We use
the one-vs-all method to train an SVM for each class.

The SVM implementation used for our experiments is
the one that is distributed with the VlFeat package [15].
The parameters of the support vector machine are tuned
empirically using only the training data, and the parameters
that yield the best average precision on the training data are
used for classification of the test data.

TABLE 1. CLASS NAMES AND NUMBER OF IMAGES IN EACH CLASS

Class Name Image Count
Achaemenid architecture 69
American craftsman style 195
American Foursquare architecture 59
Ancient Egyptian architecture 256
Art Deco architecture 366
Art Nouveau architecture 450
Baroque architecture 239
Bauhaus architecture 92
Beaux-Arts architecture 191
Byzantine architecture 111
Chicago School architecture 153
Colonial architecture 177
Deconstructivism 213
Edwardian architecture 79
Georgian architecture 154
Gothic architecture 109
Greek Revival architecture 327
International style 207
Novelty architecture 212
Palladian architecture 113
Postmodern architecture 163
Queen Anne architecture 425
Romanesque architecture 107
Russian Revival architecture 165
Tudor Revival architecture 162

3. Experiments
We run three sets of experiments on our dataset, one

with the KNN classifier, one with the EFM-KNN classifier



and the third with the linear SVM classifier. We test all three
classifiers to see their effectiveness in the architectural style
recognition problem. It should be noted that we use the sky
removal pre-processing for the image retrieval experiments
and the KNN classification experiments. The dataset used
for our work is the Architectural Style Dataset which is
described in the following subsection.

3.1. Dataset

We evaluate our representation and classification tech-
niques on the challenging Architectural Style Dataset cre-
ated by [8]. This dataset consists of color images of build-
ings from 25 different architectural styles, containing 4794
photographs. These images have been downloaded from
the Wikimedia collection and feature an extensive selection
from different eras. The names of the categories and the
number of images in each are shown in Table 1. Some
sample images from the dataset are shown in Figure 4.

For our experiments using supervised classification
methods, we use 30 images from each class for training the
classifiers, and the rest of the images for testing. These are
the same numbers as used by [8]. The training and test splits
used for these experiments are randomly generated and we
do five-fold cross-validation and report the mean scores. In
retrieval tasks, all images other than the query image itself
are used to generate the retrieval set.

3.2. Results

The results of our classification experiments are shown
in Table 2. Our best results are comapred to other results
reported in [8] in Table 3. Our experiments show that the

TABLE 2. COMPARISON OF CLASSIFICATION PERFORMANCE (%)
BETWEEN THE BEST-PERFORMING CNN LAYERS USING DIFFERENT

CLASSIFIERS ON THE ARCHITECTURAL STYLE DATASET

CNN Features Used KNN SVM EFM-KNN
Layer 9 raw 13.2 43.0 59.7
Layer 12 raw 10.0 45.5 62.0
Layer 16 raw 9.1 47.9 63.9
Layer 21 raw 41.9 33.7 55.2
Layer 21 skyless 35.9 28.2 50.3
Layer 9 skyless 25.4 39.1 56.3
Layer 12 skyless 23.4 41.5 58.3
Layer 16 skyless 22.7 42.4 59.2

TABLE 3. COMPARISON OF CLASSIFICATION PERFORMANCE (%)
BETWEEN OUR BEST-PERFORMING CNN LAYER AND OTHER METHODS

AS REPORTED BY [8] ON THE ARCHITECTURAL STYLE DATASET

Method Used 25-Class Classification Rate(%)
GIST 17.39
SP 44.52
OB-Partless 42.50
OB-Part 45.41
DPM-LSVM 37.69
DPM-MLLR 42.55
MLLR+SP [8] 46.21
Layer16 Raw+EFM 63.90

CNN features from the intermediate layers (layers 9-16)
outperform the features from both the lower and higher
layers. In particular, the highest classification accuracy that
we get for the architctural style classification task is 63.9%
which is over 17% improvement over the MLLR+SP method

Figure 6. A Comparison of the class-wise classification performance between the layer 9 raw-CNN features and the pre-processed (sky-removed) CNN
features. Both the features use a KNN classifier.



Figure 7. The confusion matrix for architectural style classification using
Layer 16 CNN features and EFM-KNN classifier. The rows show the real
style categories and the columns show the assigned style categories.

proposed by [8]. We get this result with the layer 16 raw
CNN features and the EFM-KNN classifier. The highest
success rate yielded by the KNN classifier is 53.8% and for
the SVM classifier it is 47.9%. In general, the EFM-KNN
classifier performs more consistently well as compared to
the SVM classifier. All these features perform better than
the stage 8 (final CNN output) layer that is obtained after the
fully connected layers. The confusion matrix for the highest
result is shown in Figure 7. It can be seen from this figure
that the most certain classification is for Ancient Egyptian
architecture while the most confusion is between American
Craftsman and American Foursquare styles.

The class-wise classification results obtained by using
a simple KNN classifier with the raw CNN and the pre-
processed representation are compared in Figure 6. It can
be seen from the figure that the pre-processing improves the
result in almost all the categories.

Figure 1 shows the type of images retrieved by different
CNN layers for the same query image, before and after pre-
processing. Figure 5 shows three examples of retrieval using
features from the layers 9, 12 and 16 of the CNN respec-
tively. The green and red borders around retrieval results
indicate correct and incorrect style class labels, respectively.

It should also be noted that the dataset has some prob-
lems which affect the classification performance. For in-
stance, there is overlap between the Romanesque and Gothic
architecture classes and the same building is present in both
categories.

4. Conclusions

We have proposed an image representation based on
features extracted from intermediate layers of a pre-trained
CNN, and combined this representation with three dif-
ferent classifiers to perform building image classification
and retrieval tasks on a large architectural image dataset.
Our proposed representation performs better than traditional
final-stage CNN features at both retrieval and classification
tasks.

In future, we would like to extend this work by fusing the
information encoded by the different layers, either at feature
level or at decision level, to obtain better classification and
retrieval results than those obtained by single layers.
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