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ABSTRACT
This paper presents a novel set of color descriptors for ob-
ject and scene image classification. We first introduce a
new Gabor-PHOG (GPHOG) descriptor by concatenating
the Pyramid of Histograms of Oriented Gradients (PHOG)
of the local Gabor filtered images. Second, we derive the
Gabor-LBP (GLBP) descriptor by accumulating the Local
Binary Patterns (LBP) histograms of all the component im-
ages produced by applying Gabor filters. Then, by combin-
ing the GPHOG and the GLBP descriptors using an optimal
feature representation method, we propose a novel Gabor-
LBP-PHOG (GLP) image descriptor which performs well
on different image categories. Next, we make a comparative
assessment of the classification performance of the GLP de-
scriptor in six different color spaces. Finally, we present a
novel Fused Color GLP (FC-GLP) feature by integrating the
PCA features of the six color GLP descriptors. The Princi-
pal Component Analysis (PCA) and the Enhanced Fisher
Model (EFM) are applied for feature extraction and the
nearest neighbor classification rule is used for classification.
The effectiveness of the proposed GLP and FC-GLP fea-
ture vectors for image classification is evaluated using three
grand challenge datasets, namely the Caltech 256 dataset,
the MIT Scene dataset and the UIUC Sports Event dataset.
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1. INTRODUCTION
Object and scene recognition is an important part of con-

tent based image classification and retrieval. With high vari-
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ation in pose, angle and illumination, object and scene clas-
sification is a very challenging task. A good classification
framework should address the key issues of discriminatory
feature extraction as well as efficient and accurate classifi-
cation. Color provides powerful discriminating information
as humans can distinguish thousands of colors, compared to
about only two dozen shades of gray [14], and color based im-
age search can be very effective for image classification tasks
[1], [34], [38]. Some desirable properties of the descriptors
defined in different color spaces include relative stability over
changes in photographic conditions such as varying illumi-
nation. Global color features such as the color histograms
and local invariant features provide varying degrees of suc-
cess against image variations such as rotation, viewpoint and
lighting changes, clutter and occlusions [8]. Shape, texture
and local features also provide important cues for content
based image classification and retrieval. Recent works em-
ploying local texture features such as Local Binary Patterns
(LBP) [32] have shown promising results for texture and
scene recognition [1]. Shape is another important feature
which can be useful for understanding an image. Local ob-
ject shape and the spatial layout of the shape within an
image can be described by the Pyramid of Histograms of
Oriented Gradients (PHOG) descriptor [6].

In this paper, we attempt to develop novel color descrip-
tors exploring the concept of how people understand and
recognize object and scene images. We subject the image
to a series of Gabor wavelet transformations, whose kernels
are similar to the 2D receptive field profiles of the mam-
malian cortical simple cells [30]. The novelty of this paper
is in the construction of several feature vectors based on
Gabor filters. Specifically, we first present a novel Gabor-
PHOG (GPHOG) descriptor by concatenating the Pyramid
of Histograms of Oriented Gradients (PHOG) of the com-
ponents of the images produced by the result of applying a
series of Gabor filters. Second, we fuse the GPHOG with
the Gabor-LBP (GLBP) descriptor, formed by taking the
LBP histograms of the Gabor filtered images in different
orientations to design the robust Gabor-LBP-PHOG (GLP)
feature vector. We then assess our GLP feature vector in six
different color spaces, and propose several new color GLP
feature representations. We further extend this concept by
integrating the PCA features of the six color GLP vectors to
produce the novel Fused Color GLP (FC-GLP) descriptor.
Feature extraction applies the Principal Component Analy-
sis (PCA) and the Enhanced Fisher Model (EFM) [26], and



image classification is based on the nearest neighbor clas-
sification rule. Finally, the robustness of the proposed de-
scriptors and classification method is evaluated using three
datasets: the Caltech 256 grand challenge image dataset,
the UIUC Sports Event dataset and the MIT Scene dataset.

2. BACKGROUND
In the early days of image search, Swain and Ballard de-

signed a color indexing system which used color histogram
for image inquiry from a large image database [36]. No-
table contributions on color based image classification ap-
pear in [38], [24], [23] that propose several new color spaces
and methods for face, object and scene image classifica-
tion. It has been shown that fusion of color features achieve
higher classification performance in the works of [1], [39],
[35]. Datta et al. [10] discussed the importance of color,
texture and shape abstraction for content based image re-
trieval.

Several researchers have described the biological relevance
and computational properties of Gabor wavelets for image
analysis [30], [11]. Donato et al. [12] showed experimentally
that the Gabor wavelet representation is optimal for classi-
fying facial actions. In texture recognition, a Gabor filter-
based approach has been successfully used [29]. Some re-
searchers have also employed the LBP histogram sequences
of the Gabor wavelets for face image recognition [18], [40].

A robust feature extraction method that has the ability
to learn meaningful low-dimensional patterns in spaces of
very high dimensionality [21], [25], [28] is needed for efficient
retrieval. Low-dimensional representation is also important
when one considers the computational aspect. PCA has
been widely used to perform dimensionality reduction for
image indexing and retrieval [26], [22]. The EFM feature
extraction method has achieved good success for the task of
image classification and retrieval [27].

3. IMPLEMENTATION DETAILS
In this section, we will first briefly review the color spaces

in which our new descriptors are defined, and then discuss
the proposed novel descriptors and methodology for image
classification.

3.1 Color spaces
A color image is defined by a function of two spatial vari-

ables and one spectral variable, where the spectral dimension
is usually sampled to the red (R), green (G), and blue (B)
spectral bends, known as the primary colors. The commonly
used color space is the RGB color space. Other color spaces
are usually derived from the RGB color space by means of
either linear or nonlinear transformations. The HSV color
space is motivated by human vision system because humans
describe color by means of hue, saturation, and brightness.
Hue and saturation define chrominance, while intensity or
value specifies luminance [14].

The YIQ color space is adopted by the NTSC (National
Television System Committee) video standard in reference
to RGB NTSC. The I and Q components are derived from
the U and V counterparts of the YUV color space via a
clockwise rotation (33◦) [34], and is defined as follows: Y

I
Q

 =

 0.2990 0.5870 0.1140
0.5957 −0.2745 −0.3213
0.2115 −0.5226 0.3111

 R
G
B

 (1)

Figure 1: A sample color image (labeled RGB) is
shown split up into various color components of the
RGB, oRGB, HSV, YIQ, YCbCr and DCS as well
as grayscale.

The YCbCr color space is developed for digital video stan-
dard and television transmissions. In YCbCr, the RGB
components are separated into luminance, chrominance blue,
and chrominance red. Y

Cb
Cr

 =

 16
128
128


+

 65.4810 128.5530 24.9660
−37.7745 −74.1592 111.9337
111.9581 −93.7509 −18.2072

 R
G
B

 (2)

where the R,G,B values are scaled to [0, 1].
The oRGB color space [7] has three channels L, C1 and

C2. The primaries of this model are based on the three
fundamental psychological opponent axes: white-black, red-
green, and yellow-blue. The color information is contained
in C1 and C2. The value of C1 lies within [−1, 1] and the
value of C2 lies within [−0.8660, 0.8660]. The L channel
contains the luminance information and its values ranges
between [0, 1]. L

C1

C2

 =

 0.2990 0.5870 0.1140
0.5000 0.5000 −1.0000
0.8660 −0.8660 0.0000

 R
G
B

 (3)

The Discriminating Color Space (DCS), is derived from
the RGB color space by means of discriminant analysis [13].
In the RGB color space, a color image with a spatial reso-
lution of m × n contains three color component images R,
G, and B with the same resolution. Each pixel (x,y) of the
color image thus contains three elements corresponding to
the red, green, and blue values from the R, G, and B com-
ponent images. Let X be the 3-D vector in the RGB color
space

X =

 R(x, y)
G(x, y)
B(x, y)

 (4)



Figure 2: The generation of the Gabor-LBP (GLBP)
and the Gabor-PHOG (GPHOG) descriptors.

The DCS [24] defines discriminating component images via
a linear transformation WD ∈ R3×3 from the RGB color
space. The linear transformation is defined as D1(x, y)

D2(x, y)
D3(x, y)

 = WD

 R(x, y)
G(x, y)
B(x, y)

 (5)

where D1(x, y), D2(x, y), and D3(x, y) are the values of the
discriminating component images D1, D2, and D3 in the
DCS, x = 1, 2, . . . ,m and y = 1, 2, . . . , n. The transfor-
mation matrix WD ∈ R3×3 may be derived through a pro-
cedure of discriminant analysis [13]. Let Sw and Sb be the
within-class and the between class scatter matrices of the
3-D pattern vector X respectively. Sw, Sb ∈ R3x3. The
discriminant analysis procedure derives a projection matrix
WD by maximizing the criterion J1 = tr(S−1

w Sb) [13]. This
criterion is maximized when W t

D consists of the eigenvec-
tors of the matrix S−1

w Sb [13]. Figure 1 shows the grayscale
and the color components of a sample image in the six color
spaces used by us in this paper.

3.2 Novel Color GLP Descriptors for Object
and Scene Image Classification

The Gabor filter, which is based on the mathematical
model of filter theory, is considered to be a good model for
human visual receptive fields and hence the Gabor filter-
based approach has been used in this paper for subsequent
extraction of novel feature vectors.

3.2.1 The Gabor-PHOG (GPHOG) and the Gabor-
LBP (GLBP) descriptors

A Gabor filter is obtained by modulating a sinusoid with
a Gaussian distribution. In the case of 2D signals such as
images, a Gabor filter is defined as:

gν,θ,φ,σ,γ(x, y) = exp(−x
′2 + γ2y′2

2σ2
) exp(i(2πνx′ + φ)) (6)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, and
ν, θ, φ, σ, γ denote the spatial frequency of the sinusoidal

factor, orientation of the normal to the parallel stripes of
a Gabor function, phase offset, standard deviation of the
Gaussian kernel and the spatial aspect ratio specifying the
ellipticity of the support of the Gabor function respectively.
For a grayscale image f(x, y), the Gabor filtered image is
produced by convolving the input image with the real and
imaginary components of a Gabor filter [18].

The Pyramid of Histograms of Oriented Gradients (PHOG)
[6] descriptor, inspired from the Histograms of Oriented Gra-
dients (HOG) [9] and the image pyramid representation of
Lazebnik et al. [17], represents local image shape and its
spatial layout, together with a spatial pyramid kernel. The
local shape is captured by the distribution over edge orien-
tations within a region, and the spatial layout by tiling the
image into regions at multiple resolutions. The distance be-
tween two PHOG image descriptors then reflects the extent
to which the images contain similar shapes and correspond
in their spatial layout [6].

The Local Binary Patterns (LBP) method derives the tex-
ture description of a grayscale image by comparing a center
pixel with its neighbors [32]. In particular, for a 3×3 neigh-
borhood of a pixel p = [x, y]t, p is the center pixel is used
as a threshold, and the neighbors of the pixel p are defined
as N(p, i) = [xi, yi]

t, i = 0, 1, · · · , 7, where i is the number
used to label the neighbor.

We used the Gabor wavelet representation for subsequent
extraction of our feature vectors as it captures the local
structure corresponding to spatial frequency (scale), spatial
localization, and orientation selectivity. We subject each of
the three color components of the image to different even
symmetric Gabor filters [2], [16]. For all our experiments,
we choose the parameter values as φ = 0, σ = 8, γ = 1, ν =
1/16 and θ = [0, π/6, π/3, π/2, 2π/3, 5π/6], and the size of

Figure 3: An overview of multiple features fusion
methodology, the EFM feature extraction method,
and the classification stages.



Figure 4: Some sample images from the Caltech 256
dataset.

the filters used is 33×33. We derive the novel Gabor-PHOG
(GPHOG) feature vector by concatenating the PHOG of the
components of the Gabor filtered images. It should be noted
that we computed the PHOG with two levels for generating
our GPHOG descriptor. LBP histograms of each component
of the images produced as a result of applying Gabor filters
in one scale and six orientations as stated earlier are cal-
culated and concatenated to form the Gabor-LBP (GLBP)
descriptor. Figure 2 shows the generation of the GLBP and
GPHOG features.

3.2.2 The GLP and the FC-GLP descriptors
We pass both the GPHOG and the GLBP feature vectors

through a dimensionality reduction phase using a popular
method such as Principal Component Analysis (PCA) to
derive the most expressive and meaningful features. The fea-
tures so produced after applying the optimal feature repre-
sentation technique on the two descriptors are normalized to
zero mean and unit standard deviation and then integrated
to develop the new GLP feature vector, the performance of
which is measured in six different color spaces, namely RGB,
HSV, oRGB, YCbCr, YIQ and DCS as well as in grayscale.
We use PCA for the optimal representation of our color GLP
vectors with respect to minimum mean square error, and the
PCA features of the six normalized color GLP descriptors
are further combined to form the novel Fused Color GLP
(FC-GLP) descriptor which outperforms the classification
results of the individual color GLP features.

3.3 The EFM-NN Classifier
We perform learning and classification using Enhanced

Fisher Linear Discriminant Model (EFM) [26] and the near-
est neighbor classification rule. The EFM method first ap-
plies Principal Component Analysis (PCA) to reduce the
dimensionality of the input pattern vector. A popular clas-
sification method that achieves high separability among the
different pattern classes is the Fisher Linear Discriminant
(FLD) method. The FLD method, if implemented in an in-
appropriate PCA space, may lead to overfitting. The EFM
method applies an eigenvalue spectrum analysis criterion to
choose the number of principal components to avoid over-
fitting and improves the generalization performance of the
FLD. The EFM method thus derives an appropriate low di-
mensional representation from the GLP descriptor and fur-

ther extracts the EFM features for pattern classification.
We compute similarity score between a training feature vec-
tor and a test feature vector using the cosine similarity mea-
sure and the nearest neighbor classification rule. Figure 3
gives an overview of multiple feature fusion methodology,
the EFM feature extraction method, and the classification
stages.

4. EXPERIMENTS
In this section, we will first give a brief description of

the datasets used for our experiments, and then discuss the
classification performance of our novel color GLP and FC-
GLP descriptors.

4.1 Datasets
We tested our descriptors using three popular and pub-

licly available datasets, namely: the Caltech 256 dataset, the
UIUC Sports Event dataset, and the MIT Scene dataset.

4.1.1 The Caltech 256 Dataset
The Caltech 256 dataset [15] holds 30,607 images divided

into 256 object categories and a clutter class. The images
have high intra-class variability and high object location
variability. Each category contains at least 80 images and at
most 827 images. The mean number of images per category
is 119. The images represent a diverse set of lighting con-
ditions, poses, backgrounds, and sizes. Images are in color,
in JPEG format with only a small percentage in grayscale.

Figure 5: Some sample images from (a) the UIUC
Sports Event dataset, (b) the MIT Scene dataset.



Figure 6: The mean average classification perfor-
mance of the proposed color GLP and FC-GLP de-
scriptors on the Caltech 256 dataset.

The average size of each image is 351×351 pixels. Figure 4
shows some sample images from this dataset. For each class,
we make use of 50 images for training and 25 images for test-
ing. The data splits are the ones that are provided on the
Caltech website [15].

4.1.2 The UIUC Sports Event Dataset
The UIUC Sports Event dataset [19] contains 8 sports

event categories: rowing (250 images), badminton (200 im-
ages), polo (182 images), bocce (137 images), snowboarding
(190 images), croquet (236 images), sailing (190 images),
and rock climbing (194 images). A few sample images of
this dataset can be seen in figure 5(a).

From each class, we use 70 images for training and 60 im-
ages for testing the classification performance of our descrip-
tors, and we do this for five random splits. Other researchers
[3], [20] have also reported using the same number of images
for training and testing.

4.1.3 The MIT Scene Dataset
The MIT Scene dataset [33] has 2,688 images classified

as eight categories: 360 coast, 328 forest, 260 highway, 308
inside of cities, 374 mountain, 410 open country, 292 streets,
and 356 tall buildings. Some sample images from this dataset
are shown in figure 5(b). All of the images are in color, in
JPEG format, and the size of each image is 256×256 pix-

Table 1: Comparison of the Classification Perfor-
mance (%) with Other Methods on Caltech 256
Dataset.

Descriptor Performance (%)

#train = 12800, #test = 6400
oRGB-SIFT [38] 23.9
gray-PHOW 25.9
color-PHOW 29.9
CSF [38] 30.1
FC-GLP (Ours) 35.3
CGSF [38] 35.6

Table 2: Comparison of the Classification Perfor-
mance (%) with Other Methods on the UIUC Sports
Event Dataset.

Descriptor Performance (%)

#train = 560, #test = 480
SIFT+GGM [19] 73.4
OB [20] 76.3
gray-PHOW 76.4
CA-TM [31] 78.0
color-PHOW 79.0
SIFT+SC [3] 82.7
FC-GLP (Ours) 84.3
HMP [3] 85.7

els. There is a large variation in light and angles along with
a high intra-class variation. From each class, we use 250
images for training and the rest of the images for testing
the performance. We also perform a second set of experi-
ments for this dataset using 100 training images from each
class and the rest of the images for testing. For each of the
experiments, we do a five-fold cross validation.

4.2 Results and Discussion
In this section, we evaluate the performance of our pro-

posed GLP and FC-GLP descriptors in the three datasets,
and also compare it with some popular descriptors. Specifi-
cally, we compare our FC-GLP descriptor with the popular
SIFT-based Pyramid Histograms of visual Words (PHOW)
descriptor [5] on all three datasets. To compare the proposed
FC-GLP descriptor with the popular SIFT-based feature, we
generate the Pyramid Histograms of visual Words (PHOW)
feature vector [5] using the software package VLFeat [37]. To
compare the classification performance of our proposed de-
scriptor, we use the gray PHOW as well as the color PHOW
feature vectors. For both PHOW and FC-GLP, we use PCA
to obtain the most expressive features and the EFM-NN
classifier in order to make a fair comparison. In addition,

Figure 7: The mean average classification perfor-
mance of the proposed GLP descriptor in individual
color spaces as well as after fusing them on the UIUC
Sports Event dataset.



Table 3: Comparison of the Classification Perfor-
mance (%) with Other Methods on the MIT Scene
Dataset.

Descriptor Performance (%)

#train = 800, #test = 1888
CLF [1] 79.3
CGLF [1] 80.0
gray-PHOW 82.5
SE [33] 83.7
color-PHOW 84.3
CGLF+PHOG [1] 84.3
C4CC [4] 86.7
FC-GLP (Ours) 87.5

#train = 2000, #test = 688
gray-PHOW 86.2
CLF [1] 86.4
CGLF [1] 86.6
color-PHOW 89.3
CGLF+PHOG [1] 89.5
FC-GLP (Ours) 91.3

we also compare the classification performance achieved by
our FC-GLP descriptor coupled with the EFM-NN classi-
fier to the image classification performance of some other
popular methods as reported in published papers.

In the Caltech 256 dataset, YIQ-GLP performs the best
among single-color descriptors giving 32.1% success followed
by YCbCr-GLP and oRGB-GLP with 31.8% and 31.0% clas-
sification rates respectively. Figure 6 shows the success rates
of the GLP descriptors for this dataset. The FC-GLP de-
scriptor here achieves a success rate of 35.3%. Table 1 com-
pares our results with other methods.

In the UIUC Sports Event dataset, the YIQ-GLP is the
best single-color descriptor at 80.5% followed by DCS-GLP
and YCbCr-GLP respectively. The combined descriptor FC-
GLP gives a mean average performance of 84.3%. See Fig-
ure 7 for details. Table 2 compares our result with that

Figure 8: The mean average classification perfor-
mance of the proposed GLP descriptor in individual
color spaces as well as after fusing them on the MIT
Scene dataset.

Figure 9: The comparative mean average classifi-
cation performance of the FC-GLBP, FC-GPHOG
and FC-GLP descriptors on the Caltech 256, UIUC
Sports Event and MIT Scene (with 100 and 250
training images per class) datasets.

obtained by other researchers. The category wise recogni-
tion performance of our GLP descriptors on this dataset is
shown in table 4.

For the MIT Scene dataset, using 250 training images per
class, the RGB-GLP is the best single-color descriptor at
89.1% followed closely by YCbCr-GLP and DCS-GLP. The
combined descriptor FC-GLP gives a mean average perfor-
mance of 91.3%. See Figure 8 for details. Table 3 compares
our result with that of other methods. Table 5 shows the
class wise classification rates for this dataset on applying the
proposed GLP descriptors.

Figure 9 gives a comparison of the FC-GLBP, FC-GPHOG
descriptors and their fusion (FC-GLP) for image classifica-
tion in the three datasets used for our experiments. It should
be noted that the generation time of the GPHOG and the
GLBP features varies linearly with the number of pixels in
the input image. We observe that the six color GLP features
beat the recognition performance of the Grayscale-GLP de-
scriptor which show information contained in color images
can be significantly more useful than that in grayscale im-
ages for classification. Furthermore, the fusion of multi-
ple color GLP descriptors (FC-GLP) achieves significant in-
crease in the classification performance over individual color
GLP descriptors, which implies that various color GLP de-
scriptors are not completely redundant for image classifica-
tion tasks.

5. CONCLUSION
We have presented a new Gabor-based local, texture, shape

and color feature extraction method inspired by PHOG and
fused it with GLBP features using an optimal feature repre-
sentation method such as PCA, to propose the robust GLP
descriptor and measure its performance in six different color
spaces as well as in grayscale. We then fuse the six color GLP
descriptors as a feature set to further develop the novel FC-
GLP image descriptor which exceeds or achieves comparable
performance to some of the best classification performances
reported elsewhere. Experimental results carried out using
three grand challenge datasets show that our FC-GLP de-



Table 4: Category wise GLP descriptor performance (%) on the UIUC Sports Event dataset. Note that the
categories are sorted on the FC-GLP results

Category FC YIQ DCS YCbCr HSV oRGB RGB Grayscale
rock climbing 96 94 94 93 93 94 93 90
sailing 94 94 94 94 93 92 94 92
badminton 93 88 86 88 85 87 87 87
rowing 88 87 86 85 84 86 85 82
snow boarding 88 84 83 83 83 82 81 75
polo 86 76 76 78 81 74 78 72
croquet 75 74 71 69 65 67 68 60
bocce 55 47 53 46 48 50 43 42
Mean 84.3 80.5 80.3 79.4 79.0 79.0 78.6 75.0

Table 5: Category wise GLP descriptor performance (%) on the MIT Scene dataset. Note that the categories
are sorted on the FC-GLP results

Category FC RGB YCbCr DCS YIQ oRGB HSV Grayscale
forest 97 97 96 96 96 96 97 96
highway 94 90 88 90 88 90 90 88
tall building 94 95 93 94 94 92 93 94
street 93 92 90 94 92 90 90 89
coast 93 89 93 88 91 91 90 87
mountain 91 87 87 88 89 86 87 72
inside city 88 90 86 87 84 87 83 86
open country 80 77 76 72 73 74 69 69
Mean 91.3 89.1 88.6 88.5 88.5 88.2 87.6 86.3

scriptor improves classification performance over the GLBP
and GPHOG descriptors and can be successfully applied for
object and scene image classification.
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