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Abstract— This paper presents novel color, texture and
shape descriptors for scene and object image classification
and evaluates their performance in unconventional color
spaces. First, a new three dimensional Local Binary Pattern
(3D-LBP) descriptor is proposed for color and texture
feature extraction. Second, a novel color HWML (HOG
of Wavelet of Multiplanar LBP) descriptor is derived by
computing the histogram of the orientation gradients (HOG)
of the Haar wavelet transformation of the original image and
the 3D-LBP images. Third, these descriptors are generated
in the unconventional color spaces like oRGB, 111,13, uncor-
related and discriminating color spaces to improve perfor-
mance over conventional color spaces like RGB and HSV.
Fourth, the Enhanced Fisher Model (EFM) is applied for
discriminatory feature extraction and the nearest neighbor
classification rule is used for image classification. Finally,
the Caltech 256 object categories database and the MIT
scene dataset are used to demonstrate the feasibility of the
proposed new methods.

Keywords: The HOG of Wavelet of Multiplanar LBP (HWML)
descriptor, the Fused-HWML descriptor, Haar Wavelets, Enhanced
Fisher Model (EFM), image search, scene classification

1. Introduction

Color features have been shown to achieve higher success
rate than grayscale features in image search and retrieval
due to the fact that color features contain significantly larger
amount of discriminative information [1], [2], [3]. Color
based image search can be very useful in the identification
of object and natural scene categories [4]. Color features
can be derived from various color spaces and they exhibit
different properties. Two necessary properties for color fea-
ture detectors are that they need to be stable under changing
viewing conditions, such as changes in illumination, shading,
highlights, and they should have a high discriminative power.
Global color features such as the color histogram and local
invariant features provide varying degrees of success against
image variations such as rotation, viewpoint and lighting
changes, clutter and occlusions [5], [6].
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In the past two decades, the recognition and classification
of textures using the Local Binary Pattern (LBP) features
has been shown to be promising [7], [8], [9]. The Haar
wavelet transform has been used for object detection in
images and some researchers have combined LBP with
Haar-like features for face detection [10]. The Histogram
of Orientation Gradients (HOG) descriptor [11], [12] is
able to represent an image by storing information about
its local shape. Color features when combined with the
intensity based texture descriptors are able to outperform
many alternatives. In this paper, we employ three masks in
three perpendicular planes to generate a novel multiplanar
3D-LBP feature that contains more information than the
traditional LBP. Further, we subject the 3D-LBP image to
a Haar wavelet transformation and then generate the HOG
of the resultant image to create a robust feature vector. We
extend this concept to multiple color spaces and propose
the new oRGB-HWML, YCbCr-HWML and DCS-HWML
feature representations, and then integrate them with other
color HWML features to produce the novel Fused-HWML
descriptor. Feature extraction applies the Enhanced Fisher
Model (EFM) [13] and image classification is based on the
nearest neighbor classification rule. The effectiveness of the
proposed descriptors and classification method is evaluated
using two grand challenge datasets: the Caltech 256 image
database and the MIT scene database.

2. Related work

In recent years, use of color as a means to image retrieval
[14], [3] and object and scene search [4], [1] has gained
popularity. Color features can capture discriminative infor-
mation by means of the color invariants, color histogram,
color texture, etc. The early methods for object and scene
classification were mainly based on the global descriptors
such as the color and texture histograms [15], [16], [17]. One
representative method is the color indexing system designed
by Swain and Ballard, which uses the color histogram for
image inquiry from a large image database [18]. These early
methods are sensitive to viewpoint and lighting changes,
clutter and occlusions. Hence, global methods were gradu-
ally replaced by the part-based methods, which became the
popular techniques in the object recognition community.
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More recent work on color based image classification
appears in [2], [4], [19] that propose several new color spaces
and methods for face, object and scene classification. The
HSV color space is used for scene category recognition in
[20], and the evaluation of local color invariant descriptors
is performed in [5]. The uncorrelated and discriminating
colorspaces have been discussed in [19] and the rgb and
I;I,13 color spaces have been shown to possess certain
advantages over other color spaces in [3]. Fusion of color
models, color region detection and color edge detection has
been investigated for representation of color images [6].
Some important contributions of color, texture, and shape
abstraction for image retrieval have been discussed in Datta
et al. [21].

Lately, several methods based on LBP features have been
proposed for image representation and classification [8],
[9]. In a 3 x 3 neighborhood of an image, the basic LBP
operator assigns a binary label 0 or 1 to each surrounding
pixel by thresholding at the gray value of the central pixel
and replacing its value with a decimal number converted
from the 8-bit binary number. Extraction of LBP features
is computationally efficient and with the use of multi-scale
filters invariance to scaling and rotation can be achieved [8],
[1]. Fusion of different features has been shown to achieve a
good image retrieval success rate [1], [9], [22]. Local image
descriptors have also been shown to perform well for texture
based image retrieval [1], [22].
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Fig. 1: The Histograms of Orientation Gradients (HOG)
descriptor.
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Fig. 2: The proposed 3D-LBP descriptor. A 3 x 3 x 3 pixel
region of the original image is magnified to show the 3D-
LBP neighborhoods and the resulting LBP images.
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Several researchers have used the Haar wavelet transform
for object detection in images and LBP has also been
combined with Haar-like features for face detection [10].
The Histogram of Orientation Gradients (HOG) descriptor
[11], [12] is able to represent an image by its local shape
which is captured by the distribution of edge orientations
within a region. Figure 1 shows how the HOG descriptor is
formed by the gradient histograms from a scene image.

Efficient retrieval requires a robust feature extraction
method that has the ability to learn meaningful low-
dimensional patterns in spaces of very high dimensionality
[23], [24], [25]. Low-dimensional representation is also im-
portant when one considers the computational aspect. PCA
has been widely used to perform dimensionality reduction
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Fig. 3: The proposed HWML descriptor. The original and
3D-LBP images undergo Haar Wavelet Transformation and
then HOG is generated for each component of the resulting
image and concatenated.



for image indexing and retrieval [13], [26]. The EFM feature
extraction method has achieved good success for the task of
image representation and retrieval [27].

3. Implementation details

We first review in this section eight color spaces in which
our new descriptor is defined, and then discuss the 3D-LBP
descriptor which is an improvement upon the traditional LBP
descriptor. Next we present the new HWML descriptor in
different color spaces and a combined color Fused-HWML
descriptor.

3.1 Color spaces

A color image contains three component images, and
each pixel of a color image is specified in a color space,
which serves as a color coordinate system. The commonly
used color space is the RGB color space. Other color
spaces are usually calculated from the RGB color space
by means of either linear or nonlinear transformations. To
reduce the sensitivity of the RGB images to luminance,
surface orientation, and other photographic conditions, the
rgb color space is defined by normalizing the R, G, and B
components. The HSV color space is motivated by human
vision system because humans describe color by means of
hue, saturation, and brightness. Hue and saturation define
chrominance, while intensity or value specifies luminance
[28]. The YCbCr color space is developed for digital video
standard and television transmissions. In YCbCr, the RGB
components are separated into luminance, chrominance blue,
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Fig. 4: An overview of multiple features fusion methodology,
the EFM feature extraction method, and the classification
stages.
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and chrominance red:

Y 16

Ch | =| 128

Cr 128 )
65.4810 128.5530  24.9660 R

+ | —37.7745 —74.1592 111.9337 G
111.9581 —93.7509 —18.2072 B

where the R, G, B values are scaled to [0, 1].

The RGB, HSV and YCbCr color spaces have been used
by the image processing community for several decades
and may be considered fairly conventional. Among these,
YCbCr performs very well on scene image search and
classification tasks [1]. More recently, several new color
spaces have been developed that are less commonly used
but they outperform many of the conventional color spaces
in scene image classification. Once such color space, the
oRGB color space [29] has three channels L, C| and C,. The
primaries of this model are based on the three fundamental
psychological opponent axes: white-black, red-green, and
yellow-blue. The color information is contained in C; and
C,. The value of Cj lies within [—1,1] and the value of C,
lies within [—0.8660,0.8660]. The L channel contains the
luminance information and its values ranges between [0, 1]:

L 0.2990  0.5870  0.1140 R
C; | =] 05000 0.5000 -—1.0000 G| @
G 0.8660 —0.8660  0.0000 B

Another approach to stabilize RGB images is to decorre-
late the RGB components. The I;1>I5 color space proposed
by Ohta et al. [30] applies a Karhunen Loeve transformation
to achieve this. The linear transformation is defined as
follows:

I =(R+G+B)/3
L=(R-B)/2 3)
L=(G—R—B)2

In the color spaces discussed above, the linear transforma-
tion matrix is independent of the image content. However,
in the next color space that we discuss, different images
undergo different transformations based on their content. The
Uncorrelated Color Space (UCS), is derived from the RGB
color space using a decorrelation method, such as PCA [31].
In the RGB color space, a color image with a spatial resolu-
tion of m X n contains three color component images R, G,
and B with the same resolution. Each pixel (x,y) of the color
image thus contains three elements corresponding to the red,
green, and blue values from the R, G, and B component
images which are correlated as well. The UCS decorrelates
its component images via a linear transformation Wy, € R3*3
from the RGB color space

Ul(xay) R(x,y)
U (xay) =Wy G(xvy) 4)
U3(x7y) B('x?y)
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8} D2

Fig. 5: A sample image from the MIT Scene dataset (top left) is shown split up into various color components.

where Ui (x,y),Uz(x,y), and Usz(x,y) are the values of the
uncorrelated component images U;,U,, and Uz in the UCS,
x=1,2,...,mand y=1,2,...,n. The transformation matrix
may be derived using PCA. Let 2" be the 3-D vector in the
RGB color space

R(x,y)
Z = | G(x,y) ©)

B(x,y)
The covariance matrix of 2 can be factorized in the
following form: Lo = WiAWy (6)
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Fig. 6: Some sample images from the (a) Caltech 256 dataset
and (b) the MIT Scene dataset.

Tall Building

where W/, € R3*3 is an orthonormal eigenvector matrix
of the covariance matrix of the random vector 2", and
A =diag{\,\z,...,Ay} a diagonal eigenvalue matrix with
diagonal elements in decreasing order. The value of N here
is 3.

The Discriminating Color Space (DCS), is derived from
the RGB color space by means of discriminant analysis [31].
The (DCS) defines discriminating component images via a
linear transformation Wp € R**3 from the RGB color space

Dl(xvy) R(x7y)
Dz(xvy) =Wp G(x,y) N
D3(-x7y) B(x7y)

where Di(x,y),Dz(x,y), and D3(x,y) are the values of the
discriminating component images Di,D;, and D3 in the
DCS, x=1,2,...,m and y=1,2,...,n. The transformation
matrix Wp € R?*3 may be derived through a procedure of
discriminant analysis [31]. Let S, and S;, be the within-class
and the between class scatter matrices of the 3-D pattern vec-
tor 2 respectively. S,,,S;, € R¥3. The discriminant analysis
procedure derives a projection matrix Wp by maximizing the
criterion J; = tr(S;'S,) [31]. This criterion is maximized
when W}, consists of the eigenvectors of the matrix S,,'S)
(31]

®

where W}, A are the eigenvector and eigenvalue matrices
of S,,!S},, respectively. Obviously, the transformation matrix
Wp depends on the contents of the training image set.
The eight colorspaces used by us in this paper and their
component images are shown in Figure 5.

3.2 The 3D-LBP and HWML descriptors

The LBP descriptor assigns an intensity value to each
pixel of an image based on the intensity values of the eight

SIS, W = WhHA
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Table 1: Category wise descriptor performance (%) on the
top 15 classes of the Caltech 256 dataset. Note that the
categories are sorted on the Fused-HWML results

Category Fusion | YCbCr | DCS | oRGB | RGB
car-side 100 100 100 100 100
faces-easy 100 100 100 100 100
airplanes 100 92 84 96 92
motorbikes 100 88 100 96 84
bonsai 100 88 84 92 84
sunflower 96 100 92 96 84
leopards 96 96 100 96 88
hibiscus 92 88 76 92 80
watch 92 84 84 88 76
ketch 84 76 80 76 84
school-bus 80 80 76 80 68
trilobite 80 68 72 72 76
american-flag 80 60 76 72 40
grand-piano 76 76 88 80 84
telephone-box 76 72 72 76 56

neighboring pixels. Since a color image is represented by a
three dimensional matrix, we extended this concept to assign
an intensity value to each pixel based on its neighboring
pixels not only on the same color plane but on other planes
as well. This method is explained in Figure 2. We replicate
the first and third image planes on opposite sides of the three
existing planes to create a five-plane matrix. After the LBP
operation, only the three middle planes are retained.

The 3D-LBP method produces three images. We then
apply the Haar wavelet transformation to the original and
these three images to divide each image into four distinct
regions. We then generate the HOG descriptor for each
of these regions of the four images and then concatenate
them to get our final HWML feature vector. This process is
illustrated in Figure 3.

3.3 The EFM-NN Classifier

We perform learning and classification using Enhanced
Fisher Linear Discriminant Model (EFM) [13]. The EFM
method first applies Principal Component Analysis (PCA)
to reduce the dimensionality of the input pattern vector.
A popular classification method that achieves high sepa-

Table 2: Comparison of the Classification Performance (%)
with Other Methods on Caltech 256 Dataset

#train  #test | HWML [4]
DCS 30.5
oRGB 30.7
15360 5120 | YCbCr 311 | -
Fused 35.6
oRGB 29.0
DCS 29.1 | oRGB-SIFT 239
12800 6400 | YCbCr 29.7 | CSF 30.1
Fused 33.9 | CGSF 35.6

ucs-HwwL I 6.6

13- HwwvL [ 2 7.3

Hsv-hwiL [ 2 7.9

Ree-HwmL I 25.9

orGe-HwML I 29.0

pcs-HwmL I 5.1

yeber-HwML ] 2 9.7

Fused-HwiL [ 33.9
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Fig. 7: The mean average classification performance of the
proposed HWML descriptor in the RGB, HSV, YCbCr,
oRGB, I 1113, UCS, DCS and fused color spaces using the
EFM-NN classifier on the Caltech 256 dataset.

rability among the different pattern classes is the Fisher
Linear Discriminant (FLD) method. The FLD method, if
implemented in an inappropriate PCA space, may lead to
overfitting. The EFM method, which applies an eigenvalue
spectrum analysis criterion to choose the number of prin-
cipal components to avoid overfitting, thus improves the
generalization performance of the FLD. The EFM method
thus derives an appropriate low dimensional representation
from the 3DLH descriptor and further extracts the EFM
features for pattern classification. We compute similarity
score between a training feature vector and a test feature
vector using the cosine similarity measure and the nearest
neighbor classification rule. Figure 4 gives an overview
of multiple feature fusion methodology, the EFM feature
extraction method, and the classification stages.

4. Experimental results

4.1 Caltech 256 Dataset

The Caltech 256 dataset [33] holds 30,607 images divided
into 256 object categories and a clutter class. The images
have high intra-class variability and high object location
variability. Each category contains at least 80 images, a
maximum of 827 images and 119 mean number of images
per category. The images represent a diverse set of lighting
conditions, poses, backgrounds, and sizes. Images are in
color, in JPEG format with only a small percentage in
grayscale. The average size of each image is 351x351 pixels.
A few sample images from this dataset can be seen in
Figure 6(a).

On this dataset, we conduct experiments for HWML de-
scriptors from seven different color spaces and their fusion.
For each class, we make use of 50 images for training and
25 images for testing. The data splits are the ones that
are provided on the Caltech website [33]. Figure 7 shows
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Table 3: Category wise descriptor performance (%) on the MIT Scene dataset. Note that the categories are sorted on the

Fused-HWML results

Category Fusion | YCbCr | DCS | oRGB | RGB | HSV | UCS | I;LI; | rgb
forest 97 98 97 96 97 97 96 97 95
coast 94 90 91 92 93 90 90 91 91
street 94 88 89 95 89 89 86 90 88
inside city 92 92 93 92 92 88 89 87 89
mountain 92 90 89 90 89 88 88 87 86
tall building 92 89 87 86 87 88 85 85 86
highway 920 88 88 88 86 86 82 88 84
open country 79 75 72 76 71 74 70 72 68
Mean 91.3 88.7 | 88.3 88.2 | 88.1 | 87.5| 87.1 85.9 | 85.7

the detailed performance of our EFM-NN classification
technique on this dataset. The best recognition rate that we
obtain is 33.9%, which is a very respectable value for a
dataset of this size and complexity. It can be seen from our
previous work [4] that dense histograms perform poorly on
this dataset as the intra-class variability is very high and
in several cases the object occupies a small portion of the
full image. Also, processor-intensive SIFT based methods
achieve the best classification rate of 23.9% for a single
color space and 35.6% after color and grayscale fusion. The
proposed method is faster than the SIFT-based method and
the YCbCr-HWML alone achieves a success rate of 29.7%.
Fusion of color spaces improves our result further by over
4%. Due to the nature of the 3D-LBP descriptor, it is not
defined for grayscale images and so we did not conduct
any experiments for grayscale. Also, conversion to the rgb
color space is undefined for grayscale images and we did not
use the rgb color space on this dataset as it contains some
grayscale images.

Table 2 compares our results with those of SIFT-based
methods. Table 1 shows the descriptor performance for
the top 15 categories from this dataset. The Fused-HWML
recognition rates for the top 15 categories lie between 76%
and 100% with five categories having full success rate.

Table 4: Comparison of the Classification Performance (%)
with Other Methods on the MIT Scene Dataset

#train  #test | HWML [1] [32]
oRGB 88.2
DCS 88.3 | CLF 86.4

2000 688 | YCbCr 88.7 | CGLF 86.6
Fused 91.3 | CGLF+PHOG 89.5
DCS 85.6
YCbCr 85.7 | CLF 79.3

800 1888 | oRGB 85.8 | CGLF 80.0
Fused 87.8 | CGLF+PHOG 84.3 | 83.7

4.2 MIT Scene Dataset

The MIT Scene dataset [32] has 2,688 images classified as
eight categories: 360 coast, 328 forest, 374 mountain, 410
open country, 260 highway, 308 inside of cities, 356 tall
buildings, and 292 streets. All of the images are in color, in
JPEG format, and the average size of each image is 256x256
pixels. There is a large variation in light, pose and angles,
along with a high intra-class variation. Some images from
this dataset can be seen in Figure 6(b).

From each class, we use 250 images for training and the
rest of the images for testing the performance, and we do
this for five random splits. Here YCbCr-HWML is the best
single-color descriptor at 88.7% followed closely by DCS-
HWML at 88.3%. The combined descriptor Fused-HWML
gives a mean average performance of 91.3%. See Figure 8
for details. Table 3 shows the category wise descriptor
performance on the MIT scene dataset. We achieve the
best classification performance for categories like forest and
coast where there are disctinctive visual elements like trees
and the ocean. The worst classification performance is seen

rgb-HWML [ 5 7
ves-Hwvie [ s .o
iziz-Hwae [ = .1
svHwiL I :7 5
Ree-HwvL | ¢
orgs-HWML [ oo 2
ocs-HwL (I co.3
yeecrswirL I :: 7

Fused-HwmiL | o 1.3
820

Descriptor

B4.0 86.0 B8B.0
Mean Average Classification Performance (%)

200 920

Fig. 8: The mean average classification performance of the
proposed HWML descriptor in the RGB, rgb, HSV, YCbCer,
oRGB, I 113, UCS, DCS and fused color spaces using the
EFM-NN classifier on the MIT scene dataset.



for the open country category where there are very few
distinguishing visual features. For the other seven categories,
the Fused-HWML descriptor classifies with 90% or above
success rate. Table 4 compares our result with that obtained
by other methods. Note that we tested our descriptor in
the rgb color space as well for this dataset and the fused
descriptor contains RGB, HSV, rgb, YCbCr, UCS, DCS,
I;1,13 and oRGB-HWML descriptors.

5. Conclusion

We have proposed a new LBP-based texture feature
extraction method for color images and combined it with
Haar wavelet features and HOG features to generate several
new color descriptors: the oRGB-HWML descriptor, the
YCbCr-HWML descriptor, the DCS-HWML descriptor and
the Fused-HWML descriptor for scene image and object
image classification. Results of the experiments using two
grand challenge datasets show that our oRGB-HWML, DCS-
HWML and YCbCr-HWML descriptors improve recogni-
tion performance over conventional color LBP descriptors.
The fusion of multiple color HWML descriptors (Fused-
HWML) shows significant improvement in the classification
performance, which indicates that various color HWML
descriptors are not redundant for scene image classification
tasks.
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