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Abstract— This paper presents several novel Gabor-based
color descriptors for object and scene image classification.
Firstly, a new Gabor-HOG descriptor is proposed for im-
age feature extraction. Secondly, the Gabor-LBP descrip-
tor derived by concatenating the Local Binary Patterns
(LBP) histograms of all the component images produced by
applying Gabor filters is integrated with the Gabor-HOG
using an optimal feature representation method to introduce
a novel Gabor-LBP-HOG (GLH) image descriptor which
performs well on different object and scene image categories.
Finally, the Enhanced Fisher Model (EFM) is applied for
discriminatory feature extraction and the nearest neighbor
classification rule is used for image classification. The
robustness of the proposed GLH feature vector is evaluated
using three grand challenge datasets, namely the Caltech
256 dataset, the MIT Scene dataset and the UIUC Sports
Event dataset.

Keywords: The Gabor-HOG descriptor, the Gabor-LBP descrip-
tor, the GLH descriptor, EFM, color fusion, color spaces, image
search

1. Introduction

Content-based image classification and retrieval is an
important research area in image processing and analysis.
A good image classification system should consider both
extraction of meaningful features from the image as well
as accurate classification. Color provides powerful discrim-
inating information as humans can distinguish thousands of
colors, compared to about only two dozen shades of gray
[1], and color based image search has been found to be
very effective for image classification tasks [2], [3], [4].
Color features derived from different color spaces exhibit
different properties, most important of which is that they
need to be stable under changing viewing conditions, such
as changes in illumination, shading and highlights. Global
color features such as the color histogram and local invariant
features provide varying degrees of success against image
variations such as rotation, viewpoint and lighting changes,
clutter and occlusions [5], [6]. Recent works on employing
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local texture features such as Local Binary Patterns (LBP)
[7] have been promising for object and scene recognition
[2], [8]. Local object appearance and shape within an image
can be described by the Histogram of Oriented Gradients
(HOG) that stores distribution of edge orientations within
an image [9].

The motivation behind this work lies in the concept of how
people understand and recognize objects and scenes. We sub-
ject the image to a series of Gabor wavelet transformations,
whose kernels are similar to the 2D receptive field profiles
of the mammalian cortical simple cells [10]. The Gabor
filters exhibit desirable characteristics of spatial locality and
orientation selectivity [11], [12]. The novelty of this paper is
in the construction of several feature vectors based on Gabor
filters. Specifically, we first present a novel Gabor-HOG
descriptor by taking the Histogram of Oriented Gradients
of the components of the images produced by the result of
applying Gabor filters in different scales and orientations. We
then fuse the Gabor-HOG with the Gabor-LBP descriptor,
formed by taking the LBP histograms of the Gabor filtered
images, in the PCA space to design the robust Gabor-LBP-
HOG (GLH) feature vector. We further extend this concept to
different color spaces and propose several new GLH feature
representations, and finally integrate them with other color
GLH features to produce the novel Fused Color GLH (FC-
GLH) descriptor. Feature extraction applies the Enhanced
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Fig. 1: Some sample images from the Caltech 256 dataset.
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Fisher Model (EFM) [13], and image classification is based
on the nearest neighbor classification rule. The effectiveness
of the proposed descriptors and classification method is eval-
vated using three datasets: the Caltech 256 grand challenge
image dataset, the UIUC Sports Event dataset and the MIT
Scene dataset.

2. Related work

In the early days of image search, Swain and Ballard de-
signed a color indexing system which used color histogram
for image inquiry from a large image database [14]. More
recent work on color based image classification appears in
[4], [15] that propose several new color spaces and methods
for face, object and scene classification. It has been shown
that fusion of color features achieve higher classification
performance in the works of [2], [16], [6]. Datta et al.
[17] discussed the importance of color, texture and shape
abstraction for content based image retrieval.

Several researchers have described the biological rele-
vance and computational properties of Gabor wavelets for
image analysis [10], [18]. Lades et al. [19] used Gabor
wavelets for face recognition using the Dynamic Link Ar-
chitecture (DLA) framework. Lately, Donato et al. [20]
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Fig. 2: Some sample images from the (a) MIT Scene dataset,
(b) the UIUC Sports Event dataset.
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Fig. 3: The generation of the Gabor-HOG and the Gabor-
LBP descriptors.

showed experimentally that the Gabor wavelet representation
is optimal for classifying facial actions. Methods based on
LBP features have been proposed for image representation
and classification [8]. Extraction of LBP features is com-
putationally efficient and with the use of multi-scale filters
invariance to scaling and rotation can be achieved [8], [2].
Some researchers have also employed the LBP histogram
sequences of the Gabor wavelets for face image recognition
[21], [22].

Efficient retrieval requires a robust feature extraction
method that has the ability to learn meaningful low-
dimensional patterns in spaces of very high dimensionality
[23]. Low-dimensional representation is also important when
one considers the computational aspect. PCA has been
widely used to perform dimensionality reduction for image
indexing and retrieval [12]. The EFM feature extraction
method has achieved good success for the task of image
representation and retrieval [11].

3. Gabor-Based Novel Color Descriptors
for Image Classification

This section briefly reviews the color spaces in which our
new descriptors are defined, and then discusses the proposed
novel descriptors and classification methodology for object
and scene image classification.

3.1 Color spaces

A color image is defined by a function of two spatial vari-
ables and one spectral variable, where the spectral dimension
is usually sampled to the red (R), green (G), and blue (B)
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spectral bends, known as the primary colors. The commonly
used color space is the RGB color space. Other color spaces
are usually derived from the RGB color space by means
of either linear or nonlinear transformations. The HSV
color space is motivated by human vision system because
humans describe color by means of hue, saturation, and
brightness. Hue and saturation define chrominance, while
intensity or value specifies luminance [1]. The YIQ color
space is adopted by the NTSC (National Television System
Committee) video standard in reference to RGB NTSC.
The I and Q components are derived from the U and V
counterparts of the YUV color space via a clockwise rotation
(33°) [3], and is defined as follows:

Y 0.2990  0.5870  0.1140 R
I | =] 0597 -0.2745 —-0.3213 G
0 0.2115 -0.5226  0.3111 B

ey
The YCbCr color space is developed for digital video
standard and television transmissions. In YCbCr, the RGB
components are separated into luminance, chrominance blue,
and chrominance red.

Y 16
Ch | =] 128
Cr 128 @)
65.4810 128.5530  24.9660 R
+ | —37.7745 —-74.1592 111.9337 G
111.9581 —93.7509 —18.2072 B

where the R, G, B values are scaled to [0, 1]. The oRGB color
space [24] has three channels L, C| and C,. The primaries of
this model are based on the three fundamental psychological
opponent axes: white-black, red-green, and yellow-blue. The
color information is contained in C; and C,. The value
of C; lies within [—1,1] and the value of C, lies within
[—0.8660,0.8660]. The L channel contains the luminance
information and its values ranges between [0, 1].

L 0.2990  0.5870  0.1140 R
Ci | =1 05000 0.5000 —1.0000 G| (3
8)) 0.8660 —0.8660  0.0000 B

The Discriminating Color Space (DCS), is derived from the
RGB color space by means of discriminant analysis [25]. In
the RGB color space, a color image with a spatial resolution
of m x n contains three color component images R, G, and B
with the same resolution. Each pixel (x,y) of the color image
thus contains three elements corresponding to the red, green,
and blue values from the R, G, and B component images.
Let 2 be the 3-D vector in the RGB color space

R(x,y)
G(x,y) )
B(x,y)
The DCS [15] defines discriminating component images via
a linear transformation Wp € R3*3 from the RGB color
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space. The linear transformation is defined as

Dl(xvy) R(x7y)
DZ(xvy) =Wp G(xvy) ©)]
D3(x7y) B(x7y)

where Di(x,y),D2(x,y), and D3(x,y) are the values of the
discriminating component images Di,D», and D3 in the
DCS, x=1,2,...,m and y=1,2,...,n. The transformation
matrix Wp € R>*3 may be derived through a procedure of
discriminant analysis [25]. Let S, and S;, be the within-class
and the between class scatter matrices of the 3-D pattern vec-
tor 2 respectively. S, S, € R*3. The discriminant analysis
procedure derives a projection matrix Wp by maximizing the
criterion J; = tr(S;;'S),) [25]. This criterion is maximized
when W}, consists of the eigenvectors of the matrix S,,'S},
[25]. Figure 4 shows the grayscale and the color components
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Fig. 4: A sample image from the MIT Scene dataset (labeled
RGB) is shown split up into various color components.
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of a sample image in the six color spaces used by us in this
paper.

3.2 The Gabor-HOG, Gabor-LBP and GLH
Descriptors

A Gabor filter is obtained by modulating a sinusoid with
a Gaussian distribution. In a 2D scenario such as images, a
Gabor filter is defined as:

X2 4 y2y2 .
80.0.6.0.1(2Y') = exp(~ T ) exp(i(2nv +9)) (6)
where ¥’ = xcos® +ysin®, y = —xsin® +ycos0, and Vv,

0, ¢, o, v denote the spatial frequency of the sinusoidal
factor, orientation of the normal to the parallel stripes of
a Gabor function, phase offset, standard deviation of the
Gaussian kernel and the spatial aspect ratio specifying the
ellipticity of the support of the Gabor function respectively.
For a grayscale image f(x,y), the Gabor filtered image is
produced by convolving the input image with the real and
imaginary components of a Gabor filter [21]. Considering
that the Gabor wavelet representation captures the local
structure corresponding to spatial frequency (scale), spatial
localization, and orientation selectivity [27], we used multi-
resolution and multi-orientation Gabor filtering for subse-
quent extraction of feature vectors. We subject each of the
three color components of the image to ten combinations of
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Fig. 5: An overview of multiple features fusion methodology,
the EFM feature extraction method, and the classification
stages.
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Fig. 6: The comparative mean average classification perfor-
mance of the FC-Gabor-LBP, FC-Gabor-HOG and FC-GLH
descriptors on the Caltech 256, UIUC Sports Event and MIT
Scene (with 100 and 250 training images per class) datasets.

Gabor filters with two scales (spatial frequencies) and five
orientations. For our experiments, we choose ¢ = 0, 6 =
2,y=205, 0= [0, n/6, ®/3, ®/2, 3n/4], and Vv = [8, 16].
LBP histograms of each component of the Gabor filtered
images are computed and concatenated to form the Gabor-
LBP descriptor. We derive the HOG of the components of the
resultant filtered images to produce a novel Gabor-HOG im-
age descriptor. Figure 3 illustrates the creation of the Gabor-
HOG and Gabor-LBP features. Each of the two components
undergo a dimensionality reduction phase through Principal
Component Analysis (PCA) to derive the most expressive
and meaningful features. The features so produced after
applying the optimal feature representation technique on the
two descriptors are then integrated to develop the new GLH
feature vector, the performance of which is measured on six
different color spaces, namely RGB, HSV, oRGB, YCbCr,
YIQ and DCS as well as on grayscale. The six GLH color
descriptors are further combined to form the Fused Color
GLH (FC-GLH) descriptor. Figure 6 gives a comparison of
the two descriptors and their fusion for image classification
in the three datasets used for our experiments.

Table 1: Comparison of the Classification Performance (%)
with Other Methods on the MIT Scene Dataset

#train  #test | GLH [2] [26]
RGB 90.3 | CLF 86.4 -
2000 688 | YIQ 90.8 | CGLF 86.6
FC 91.6 | CGLF+PHOG 89.5
YIQ 86.5 | CLF 79.3
800 1888 | RGB  87.3 | CGLF 80.0

FC 87.8 | CGLF+PHOG 84.3 | 83.7
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Table 2: Comparison of the Classification Performance (%)
with Other Methods on Caltech 256 Dataset

#train  #test | GLH [4]
15360 5120 | FC 377 | -
YCbCr 33.1 | oRGB-SIFT 239
12800 6400 | YIQ 33.7 | CSF 30.1
FC 36.3 | CGSF 35.6

3.3 The EFM-NN Classifier

We perform learning and classification using Enhanced
Fisher Linear Discriminant Model (EFM) [13]. The EFM
method first applies Principal Component Analysis (PCA)
to reduce the dimensionality of the input pattern vector.
A popular classification method that achieves high sepa-
rability among the different pattern classes is the Fisher
Linear Discriminant (FLD) method. The FLD method, if
implemented in an inappropriate PCA space, may lead to
overfitting. The EFM method, which applies an eigenvalue
spectrum analysis criterion to choose the number of prin-
cipal components to avoid overfitting, thus improves the
generalization performance of the FLD. The EFM method
thus derives an appropriate low dimensional representation
from the GLH descriptor and further extracts the EFM
features for pattern classification. We compute similarity
score between a training feature vector and a test feature
vector using the cosine similarity measure and the nearest
neighbor classification rule. Figure 5 gives an overview
of multiple feature fusion methodology, the EFM feature
extraction method, and the classification stages.

4. Experimental results

4.1 Caltech 256 Dataset

The Caltech 256 dataset [30] holds 30,607 images divided
into 256 object categories and a clutter class. The images
have high intra-class variability and high object location
variability. Each category contains at least 80 images and
at most 827 images. The mean number of images per
category is 119. The images represent a diverse set of
lighting conditions, poses, backgrounds, and sizes. Images
are in color, in JPEG format with only a small percentage in
grayscale. The average size of each image is 351x351 pixels.
Figure 1 shows some sample images from this dataset.

Table 3: Comparison of the Classification Performance (%)
with Other Methods on the UIUC Sports Event Dataset

#train  #test | GLH [28] [29]
DCS 81.5 | HMP 85.7 | OB 76.3
560 480 | RGB 829 | SIFT+SC 827
FC 85.6
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For each class, we make use of 50 images for training
and 25 images for testing. The data splits are the ones that
are provided on the Caltech website [30]. In this dataset,
YIQ-GLH performs the best among single-color descriptors
giving 33.7% success followed by YCbCr-GLH and oRGB-
GLH with 33.1% and 32.9% classification rates respectively.
Figure 7 shows the success rates of the GLH descriptors for
this dataset. The FC-GLH descriptor here achieves a success
rate of 36.3%. Table 2 compares our results with those of
SIFT-based methods.

4.2 MIT Scene Dataset

The MIT Scene dataset [26] has 2,688 images classified as
eight categories: 360 coast, 328 forest, 374 mountain, 410
open country, 260 highway, 308 inside of cities, 356 tall
buildings, and 292 streets. See figure 2(a). All of the images
are in color, in JPEG format, and the average size of each
image is 256x256 pixels. There is a large variation in light
and angles along with a high intra-class variation.

From each class, we use 250 images for training and the
rest of the images for testing the performance, and we do
this for five random splits. Here also YIQ-GLH is the best
single-color descriptor at 90.8% followed closely by RGB-
GLH and HSV-GLH. The combined descriptor FC-GLH
gives a mean average performance of 91.6%. See Figure 8
for details. Table 1 compares our result with that of other
methods. Table 4 shows the class wise classification rates
for this dataset on applying the proposed GLH descriptors.

4.3 UIUC Sports Event Dataset

The UIUC Sports Event dataset [31] contains 8 sports
event categories: rowing (250 images), badminton (200 im-
ages), polo (182 images), bocce (137 images), snowboarding
(190 images), croquet (236 images), sailing (190 images),
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Fig. 7: The mean average classification performance of the
proposed GLH descriptor in individual color spaces as well
as after fusing them on the Caltech 256 dataset.
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Table 4: Category wise descriptor performance (%) on the MIT Scene dataset. Note that the categories are sorted on the

FC-GLH results

Category FC | YIQ | RGB | HSV | DCS | oRGB | YCbCr | Grayscale
forest 98 97 97 97 98 96 98 98
street 93 94 93 90 95 91 92 91
inside city 93 93 92 92 91 92 91 89
tall building 93 90 90 91 90 92 91 90
coast 93 93 92 92 89 91 92 91
highway 92 92 90 92 90 90 86 90
mountain 90 88 88 87 88 88 86 84
open country 81 79 80 79 79 79 80 76
Mean 91.6 | 90.8 | 90.3 | 90.1 | 90.1 90.0 89.6 88.7

and rock climbing (194 images). A few sample images of
this dataset can be seen in figure 2 (b).

From each class, we use 70 images for training and
60 images for testing the classification performance of our
descriptors, and we do this for five random splits. Other
researchers [28], [29] have also reported using the same
number of images for training and testing. Here RGB-GLH
is the best single-color descriptor at 82.9% followed by
DCS-GLH, Grayscale-GLH and HSV-GLH respectively. The
combined descriptor FC-GLH gives a mean average perfor-
mance of 85.6%. See Figure 9 for details. Table 3 compares
our result with that obtained by other researchers. The FC-
GLH descriptor contains RGB, HSV, YIQ, YCbCr, oRGB
and DCS-GLH descriptors. The category wise recognition
performance of our GLH descriptors on this dataset is shown
in table 5.

5. Conclusion

We have presented a new Gabor-based feature extraction
method inspired by HOG for color images and combined it
with Gabor-LBP features to propose the new GLH descrip-
tor for scene and object image classification. Experimental
results carried out using three grand challenge datasets show
that our GLH descriptor improves recognition performance
over Gabor-LBP and Gabor-HOG descriptors. The color
GLH descriptors beat the classification performance of the
Grayscale-GLH descriptor in most cases which show in-
formation contained in color images can be significantly
more useful than that in grayscale images for classification.
The fusion of multiple color GLH descriptors (FC-GLH)
achieves significant increase in the classification perfor-
mance over individual color GLH descriptors, which indi-
cates that various color GLH descriptors are not redundant
for image classification tasks.
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Fig. 8: The mean average classification performance of the
proposed GLH descriptor in individual color spaces as well
as after fusing them on the MIT Scene dataset.

Fig. 9: The mean average classification performance of the
proposed GLH descriptor in individual color spaces as well
as after fusing them on the UIUC sports event dataset.
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Table 5: Category wise descriptor performance (%) on the UIUC Sports Event dataset. Note that the categories are sorted
on the FC-GLH results

Category FC | RGB | DCS | Grayscale | HSV | oRGB | YIQ | YCbCr
rock climbing 95 95 95 94 93 93 96 93
badminton 93 91 89 91 89 89 88 91
sailing 92 93 92 92 90 88 90 91
rowing 91 87 89 87 87 89 88 86
snowboarding 90 82 84 80 84 84 78 79
polo 87 89 78 82 86 74 73 78
croquet 83 78 78 71 74 78 78 75
bocce 55 48 48 50 44 50 48 47
Mean 85.6 | 829 | 81.5 80.9 | 80.9 80.6 | 80.0 80.0
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