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This paper presents new image descriptors based on color, texture, shape, and wavelets for object and

scene image classification. First, a new three Dimensional Local Binary Patterns (3D-LBP) descriptor,

which produces three new color images, is proposed for encoding both color and texture information of

an image. The 3D-LBP images together with the original color image then undergo the Haar wavelet

and local features. Second, a novel H-descriptor, which integrates the 3D-LBP and the HOG of its

wavelet transform, is presented to encode color, texture, shape, as well as local information. Feature

extraction for the H-descriptor is implemented by means of Principal Component Analysis (PCA) and

Enhanced Fisher Model (EFM) and classification by the nearest neighbor rule for object and scene image

classification. And finally, an innovative H-fusion descriptor is proposed by fusing the PCA features of

the H-descriptors in seven color spaces in order to further incorporate color information. Experimental

results using three datasets, the Caltech 256 object categories dataset, the UIUC Sports Event dataset,

and the MIT Scene dataset, show that the proposed new image descriptors achieve better image

classification performance than other popular image descriptors, such as the Scale Invariant Feature

Transform (SIFT), the Pyramid Histograms of visual Words (PHOW), the Pyramid Histograms of

Oriented Gradients (PHOG), Spatial Envelope, Color SIFT four Concentric Circles (C4CC), Object Bank,

the Hierarchical Matching Pursuit, as well as LBP.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The color cue is often applied by the human visual system for
object and scene image classification. Indeed, color images, which
contain more discriminative information than grayscale images, have
been shown to perform better than grayscale images for image
classification tasks [1–6]. Image descriptors defined in different color
spaces usually help improve the identification of object, scene and
texture image categories [7,2]. Image descriptors derived from
different color spaces often exhibit different properties, among which
are high discriminative power and relative stability over the changes
in photographic conditions such as varying illumination. Color
histogram and global color features and local invariant features often
provide varying degrees of success against image variations such as
rotation, viewpoint and lighting changes, clutter and occlusions [8,9].

Texture, shape, and local information contribute as well to
object and scene image classification. Local Binary Patterns (LBP),
for example, has been shown to be promising for recognition
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and classification of texture images [10–12]. The Histograms of
Oriented Gradients (HOG) descriptor [13,14], which represents an
image by histograms of the slopes of the object edges in an image,
store information about the shapes contained in the image. As a
result, the HOG descriptor has become a popular method for
content based image retrieval. In addition, wavelets, such as the
Haar wavelets have been widely applied for object detection in
images [15].

Content-based image classification using large image databases
has been a popular research area during recent years. Several state-
of-the-art image classification methods involve the use of sparse
coding and local coordinate coding [16]. Their use, coupled with
efficient learning and classification methods, has been effectively
demonstrated in [17] where over a million images belonging to a
thousand categories in the ImageNet dataset were encoded and
classified with very high speed and accuracy.

We present in this paper new image descriptors that integrate
color, texture, shape, and wavelets for object and scene image
classification. First, we introduce a new three Dimensional Local
Binary Patterns (3D-LBP) descriptor for encoding the color and
texture information of a color image. Specifically, the 3D-LBP
descriptor produces three new color images from the original color
image. Second, we apply the Haar wavelet transform to the three
ased on color, texture, shape, and wavelets for object and scene
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new 3D-LBP color images and the original color image. We further
calculate the Histograms of Oriented Gradients (HOG) of these Haar
wavelet transformed images for encoding shape and local features.
Third, we propose a novel H-descriptor, which integrates the 3D-LBP
and the HOG of its wavelet transform, to encode color, texture,
shape, and local information for object and scene image classifica-
tion. Finally, we present a new H-fusion descriptor by fusing the
Principal Component Analysis (PCA) features of the H-descriptors in
the seven individual color spaces. Experimental results using three
datasets, the Caltech 256 object categories dataset, the UIUC Sports
Event dataset, and the MIT Scene dataset, show that the proposed
new image descriptors achieve better image classification perfor-
mance than other popular image descriptors, such as the Scale
Invariant Feature Transform (SIFT) [18,19], the Pyramid Histograms
of visual Words (PHOW) [20], the Pyramid Histograms of Oriented
Gradients (PHOG) [13,2], Spatial Envelope [21], Color SIFT four
Concentric Circles (C4CC) [22], Object Bank [23], the Hierarchical
Matching Pursuit [24], as well as LBP [10].
2. New image descriptors based on color, texture, shape,
and wavelets

We present in this section new image descriptors based on color,
texture, shape, and wavelets for object and scene image classifica-
tion. In particular, first, we introduce a new three Dimensional Local
Binary Patterns (3D-LBP) descriptor that produces three new color
images for encoding both color and texture information of an image.
These three new color images together with the original color image
then undergo the Haar wavelet transform with further computation
of the Histograms of Oriented Gradients (HOG) for encoding shape
and local features. Second, we present a novel H-descriptor, which
integrates the 3D-LBP and the HOG of its wavelet transform, for
encoding color, texture, shape, and local information for object
and scene image classification. Finally, we propose an innovative
H-fusion descriptor that fuses the PCA features of the H-descriptors
in the seven individual color spaces.
2.1. A new three dimensional local binary patterns (3D-LBP)

descriptor

We now introduce a new three Dimensional Local Binary
Patterns (3D-LBP) descriptor that produces three new color images
for encoding both color and texture information of an image. The
Local Binary Patterns (LBP) method derives the texture description
of a grayscale image by comparing a center pixel with its neighbors
[10,25,26].
In particular, for a 3�3 neighborhood of a pixel p¼ ½x,y�t , p is the
center pixel used as a threshold. The neighbors of the pixel p are
defined as Nðp,iÞ ¼ ½xi,yi�

t , i¼ 0,1, . . . ,7, where i is the number used
to label the neighbor. The value of the LBP code of the center pixel
Fig. 1. A grayscale image, its LBP image, and the illustration of the co
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p is calculated as follows:

LBPðpÞ ¼
X7

i ¼ 0

2iSfG½Nðp,iÞ��GðpÞg ð1Þ

where GðpÞ and G½Nðp,iÞ� are the gray level of the pixel p and its
neighbor Nðp,iÞ, respectively. S is a threshold function that is
defined below:

Sðxi�xcÞ ¼
1, if xiZxc

0, otherwise

(
ð2Þ

LBP tends to achieve grayscale invariance because only the signs
of the differences between the center pixel and its neighbors are
used to define the value of the LBP code as shown in Eq. (1). Fig. 1
shows a grayscale image on the left and its LBP image on the right.
The two 3�3 matrices in the middle illustrate how the LBP code is
computed for the center pixel whose gray level is 90. In particular,
the center pixel functions as a threshold, and after thresholding the
right 3�3 matrix reveals the signs of the differences between the
center pixel and its neighbors. Note that the signs are derived from
Eqs. (1) and (2), and the threshold value is 90, as the center pixel is
used as the threshold in the LBP definition. The binary LBP code is
01001101, which corresponds to 77 in decimal.

LBP, however, does not encode color information, which is an
effective cue for pattern recognition such as object and scene image
classification [2,27,28]. The motivation for our new three dimen-
sional LBP descriptor, or 3D-LBP descriptor, rests on the extension of
the conventional LBP method to incorporate the color cue when
encoding a color image. Specifically, given a color image, our 3D-LBP
descriptor generates three new color images by applying three
perpendicular LBP encoding schemes. Fig. 2 shows a color image,
the three perpendicular LBP encoding schemes, and the three
encoded color images generated by our 3D-LBP descriptor. The first
LBP encoding scheme applies a 3�3 neighborhood, which is shown
in pink color in the top row of the second column, to encode the red,
green, and blue component images, respectively. The encoded three
images then form a new color image that is displayed as the top
image in the last column in Fig. 2. The outer pixels are discarded on
all sides after performing the LBP operation and hence this image is
smaller than the original image by one pixel on all sides. The second
LBP encoding scheme utilizes a 3�3 neighborhood shown in pink
color in the middle row of the second column to encode the rows
across the red, green, and blue component images, and the encoded
three images form a new color image that is shown as the middle
image in the last column in Fig. 2. The third LBP encoding scheme
uses a 3�3 neighborhood shown in pink color in the bottom row of
the second column to encode the columns across the red, green, and
blue component images, and the encoded three images form a new
color image that is displayed as the bottom image in the last column
in Fig. 2. Normally, after performing an LBP operation, we need
to discard the outer pixels. However, since the number of color
planes is just three, we cannot simply discard the top and bottom
planes after performing the new LBP operations as shown in the
second and third rows of Fig. 2. To solve this problem, we replicate
mputation of the LBP code for a center pixel with gray level 90.

ased on color, texture, shape, and wavelets for object and scene
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Fig. 2. A color image, the three perpendicular LBP encoding schemes, and the three encoded color images generated by our 3D-LBP descriptor. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)
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the existing planes in a manner that puts an extra plane on either
side of the three existing planes without copying a plane next to
itself. For example, if the image is RGB, our new five-plane matrix
will be BRGBR. After the 3D-LBP operation is done, these two new
planes, i.e. the first and fifth planes of the five-plane image, are
discarded to give us a three plane image again. The 3D-LBP
descriptor thus encodes the color and texture information to
generate three new color images as shown in the last column in
Fig. 2, which will be further processed in order to extract shape and
local information.

The extension of LBP to 3D-LBP is based on two reasons. First,
the relative values of the intensities of the pixels at the same
position in the three component planes of an image determines
the color of that particular pixel. 3D-LBP captures this relation-
ship between the pixel intensities across the planes to encode
color. Second, 3D-LBP also encodes the relationship between a
pixel’s intensity value and the next pixel’s intensity value, which
essentially works as a high-pass filter in selective orientations to
enhance local intensity variations in an image. Hence the two new
color images produced by the 3D-LBP operation, other than the
traditional LBP image, which are shown in the center and bottom
right of Fig. 2, have enhanced local features separately in the
vertical and horizontal directions, respectively.

2.2. A novel H-descriptor

Our 3D-LBP descriptor improves upon the conventional LBP
method by means of encoding both color and texture information
of a color image. The motivation for our next new descriptor, the
H-descriptor, is based on incorporating additional useful and impor-
tant features for object and scene image classification, such as shape
and local features. Towards that end, we first compute the Haar
wavelet transform of the color image and its new 3D-LBP color
images. We then derive the Histograms of Oriented Gradients (HOG)
[29] of the Haar wavelet transformed images for encoding both
shape and local features. And we finally integrate these HOG
features corresponding to the Haar wavelet transform of both the
original color image and the 3D-LBP color images to form the
H-descriptor, which encodes color, texture, shape, and local infor-
mation for object and scene image classification.
Please cite this article as: S. Banerji, et al., New image descriptors b
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The Haar wavelet transform [30], which extracts local infor-
mation by means of enhancing local contrast, is applied to every
component image of the color image and its three 3D-LBP color
images. Haar is chosen over other wavelets due to its simplicity
and computational efficiency. The 2D Haar wavelet transform is
defined as the projection of an image onto the 2D Haar basis
functions, which are formed by the tensor product of the one
dimensional Haar scaling and wavelet functions [30,31]. The Haar
scaling function fðxÞ is defined below [30,32]:

fðxÞ ¼
1, 0rxo1

0, otherwise

(
ð3Þ

A family of functions can be generated from the basic scaling
function by scaling and translation [30,32]:

fi,jðxÞ ¼ 2i=2fð2ix�jÞ ð4Þ

As a result, the scaling functions fi,jðxÞ can span the vector spaces
Vi, which are nested as follows: V0

� V1
� V2

� � � � [33].
The Haar wavelet function cðxÞ is defined as follows [30,32]:

cðxÞ ¼
1, 0rxo1=2

�1, 1=2rxo1

0, otherwise

8><
>: ð5Þ

The Haar wavelets are generated from the mother wavelet by
scaling and translation [30,32]:

ci,jðxÞ ¼ 2i=2cð2ix�jÞ ð6Þ

The Haar wavelets ci,jðxÞ span the vector space Wi, which is the
orthogonal complement of Vi in Viþ1: Viþ1

¼ Vi
�Wi [30,32].

The 2D Haar basis functions are the tensor product of the one
dimensional scaling and wavelet functions [31].

Fig. 3 shows a color image, its three component images, their
Haar wavelet transformed images, and the color Haar wavelet
transformed image. One can see that these Haar wavelet trans-
formed images reveal both local and shape information. The
image in the upper left quadrant of the Haar wavelet transformed
image is a lower resolution version of the original image while the
other three quadrants contain the high-frequency information
from the images along separate orientations. As the second step of
ased on color, texture, shape, and wavelets for object and scene
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generating the proposed descriptor, the Haar wavelet transform
of each of the three 3D-LBP color images is carried out.

To further encode local and shape information, we compute
the HOG of the Haar wavelet transformed images. The idea of
HOG rests on the observation that local object appearance and
shape can often be characterized well by the distribution of local
intensity gradients or edge directions [29]. Since 3D-LBP and Haar
wavelet transform both work towards enhancing edges and other
high-frequency local features, the choice of HOG as the next step
seems logical as an image with enhanced edges is likely to yield
more shape information than an unprocessed image. HOG fea-
tures are derived based on a series of well-normalized local
histograms of image gradient orientations in a dense grid [29].
In particular, the image window is first divided into small cells.
For each cell, a local histogram of the gradient directions or the
edge orientations is accumulated over the pixels of the cell.
All the histograms within a block of cells are then normalized to
reduce the effect of illumination variations. The blocks can be
Fig. 3. A color image, its three component images, their Haar wavelet transformed im

references to color in this figure caption, the reader is referred to the web version of t

Fig. 4. A color image, the edge images of its three color component images, the orien

descriptors for the three color component images, and the concatenated HOG descript

figure caption, the reader is referred to the web version of this article.)

Fig. 5. A color Haar wavelet transformed image, its four quadrant color images, their

references to color in this figure caption, the reader is referred to the web version of t
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overlapped with each other for performance improvement.
The final HOG features are formed by concatenating all the
normalized histograms into a single vector. In our experiments,
we divide the image into 3�3 parts and each histogram divides
the gradients into nine bins. That makes the HOG vector 81
elements long. In the case of a color image, we repeat this process
separately for the three component images and then concatenate
the histograms. The length of a color HOG feature vector is 81�3,
i.e. 243. Fig. 4 shows how the HOG descriptor is formed by the
gradient histograms from a color image.

Specifically, we compute four HOG descriptors from the four
quadrants of a Haar wavelet transformed image and then concate-
nate them to get the HOG descriptor of a Haar wavelet transformed
image. Fig. 5 shows a color Haar wavelet transformed image, its
four quadrant color images, their HOG descriptors, and the concate-
nated HOG descriptor. We finally integrate the HOG descriptors from
the Haar wavelet transform of the component images of the color
image and its 3D-LBP color images to form the H-descriptor, which
ages, and the color Haar wavelet transformed image. (For interpretation of the

his article.)

tation gradients of an example small area from every edge image, the three HOG

or for the whole color image. (For interpretation of the references to color in this

HOG descriptors, and the concatenated HOG descriptor. (For interpretation of the

his article.)
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encodes color, texture, shape, and local information for object and
scene image classification. In particular, for a color image, our 3D-LBP
descriptor first generates three new color images. The Haar wavelet
transform then produces twelve wavelet transformed images from
the twelve color component images of the color image and its three
3D-LBP color images. The HOG process further generates four HOG
descriptors corresponding to each of the Haar wavelet transformed
images. The HOG descriptors from all the Haar wavelet transformed
images are finally concatenated to form a new descriptor, the
H-descriptor. The dimensionality of this descriptor is 3888 which is
the product of the size of the grayscale HOG vector and the total
number of quadrants from all the twelve component images of the
four Haar transformed color images (81�4�12). The time taken to
compute the H-descriptor from an image is empirically seen to be
directly proportional to the number of pixels in the image. For
experiments done with a large number of images, the average feature
extraction time is found to be 5.5 s per image on an Intels CoreTM

i3-2120 3.30 GHz CPU with 8 GB RAM. Fig. 6 shows a color image, its
3D-LBP color images, the Haar wavelet transformed color images, and
the H-descriptor derived from the concatenation of the HOG descrip-
tors of the Haar wavelet transformed color images.

2.3. An innovative H-fusion descriptor

Color provides a very important cue for pattern recognition in
general and for object and scene image classification in particular
[1–7,27,28]. To further incorporate color information, we introduce an
H-fusion descriptor that fuses the most expressive features of the H-
descriptors in seven different color spaces, where the most expressive
features are extracted by means of principal component analysis and
the seven color spaces are the RGB, oRGB, HSV, YIQ, YCbCr, I1I2I3, and
DCS color spaces [27].

Principal component analysis, or PCA, which is the optimal feature
extraction method in the sense of the mean-square-error, derives the
most expressive features for signal and image representation. Speci-
fically, let XARN be a random vector whose covariance matrix is
Fig. 6. A color image, its 3D-LBP color images, the Haar wavelet transforms of these colo

of these Haar transform images. (For interpretation of the references to color in this fi
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defined as follows [34]:

S¼ Ef½X�EðXÞ�½X�EðXÞ�tg ð7Þ

where Eð�Þ represents expectation and t the transpose operation. The
covariance matrix S is factorized as follows [34]:

S¼FLFt
ð8Þ

where F¼ ½f1f2 � � �fN� is an orthogonal eigenvector matrix and
L¼ diagfl1,l2, . . . ,lNg a diagonal eigenvalue matrix with diagonal
elements in decreasing order. An important application of PCA is the
extraction of the most expressive features of X . Towards that end,
we define a new vector Y: Y ¼ PtX , where P¼ ½f1f2 . . .fK �, and
KoN. The most expressive features of X thus define the new vector
YARK , which consists of the most significant principal components.

Next, we briefly review the seven color spaces used to define our
H-fusion descriptor. The RGB color space, whose three component
images represent the red, green, and blue primary colors, is the
common tristimulus space for color image representation. Other
color spaces are usually derived from the RGB color space using
either linear or nonlinear transformations. The I1I2I3 color space is
defined by the following linear transformation from the RGB color
space [35]: I1 ¼ ðRþGþBÞ=3, I2 ¼ ðR�BÞ=2, I3 ¼ ð2G�R�BÞ=4. The
HSV (hue, saturation, and value) color space, however, is derived
nonlinearly from the RGB color space [36]:

H¼

60
G�B

d

� �
if MAX ¼ R

60
B�R

d
þ2

� �
if MAX ¼ G

60
R�G

d
þ4

� �
if MAX ¼ B

8>>>>>>>><
>>>>>>>>:

S¼
d=MAX if MAXa0

0 if MAX ¼ 0

�
V ¼MAX ð9Þ

where MAX ¼maxðR,G,BÞ, MIN¼minðR,G,BÞ, and d¼MAX�MIN.
r images, and the H-descriptor formed by the concatenation of the HOG descriptors

gure caption, the reader is referred to the web version of this article.)
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The remaining four color spaces are transformed from the RGB
color space using linear transformations. The YCbCr color space is
defined as follows [37]:

Y

Cb

Cr

2
64

3
75¼

16

128

128

2
64

3
75þ

65:481 128:553 24:966

�37:797 �74:203 112:000

112:000 �93:786 �18:214

2
64

3
75

R

G

B

2
64

3
75 ð10Þ

The YIQ color space is defined as given below [38]:

Y

I

Q

2
64

3
75¼

0:2990 0:5870 0:1140

0:5957 �0:2745 �0:3213

0:2115 �0:5226 0:3111

2
64

3
75

R

G

B

2
64

3
75 ð11Þ
Fig. 7. A color image, its grayscale image, and the color component images in the oRGB,

of the references to color in this figure caption, the reader is referred to the web versi

Fig. 8. A color image, its corresponding color images in the seven color spaces, the H-d

H-fusion descriptor. (For interpretation of the references to color in this figure caption
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The three component images L, C1, and C2 of the oRGB color space
are defined as follows [39]:

L

C1

C2

2
64

3
75¼

0:2990 0:5870 0:1140

0:5000 0:5000 �1:0000

0:8660 �0:8660 0:0000

2
64

3
75

R

G

B

2
64

3
75 ð12Þ

The discriminating color space or DCS defines discriminating
component images by means of a linear transformation from
the RGB color space [27]: ½D1,D2,D3�

t ¼WD½R,G,B�t . The transfor-
mation matrix, WDAR3�3, is derived through a procedure of
discriminant analysis [27,34]. Fig. 7 shows a color image, its
grayscale image, and the color component images in the oRGB,
RGB, YIQ, HSV, I1I2I3, YCbCr, and DCS color spaces, respectively.
RGB, YIQ, HSV, I1I2I3, YCbCr, and DCS color spaces, respectively. (For interpretation

on of this article.)

escriptors of the color images, the PCA process, the concatenation process, and the

, the reader is referred to the web version of this article.)
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The proposed H-fusion descriptor is derived by first computing
the H-descriptors in the seven color spaces, then extracting the
most expressive features of the H-descriptors using PCA, and
finally concatenating these most expressive features from the
seven color spaces. Specifically, we take each color image, convert
it to six different color spaces from the RGB color space, and
compute the H-descriptor from each of these six color images and
the RGB image. Next, we extract the most expressive features
from each of these seven H-descriptors using PCA and then
concatenate these seven sets of PCA features to get the H-fusion
descriptor. The number of PCA features selected from each of the
H-descriptors depends on the size of the dataset and the size of
the training set. Fig. 8 shows a color image, its corresponding
color images in the seven color spaces, the H-descriptors of the
color images, the PCA process, the concatenation process, and the
H-fusion descriptor. In the example shown in the figure, 500 PCA
features are shown from each of the seven H-descriptors to
eventually form a 3500-dimensional H-fusion descriptor.
3. The enhanced fisher model for feature extraction and the
nearest neighbor classification rule – the EFM-NN classifier

Object and scene image classification using the new descriptors
introduced in the preceding section is implemented using the
Enhanced Fisher Model (EFM) for feature extraction [40] and the
Nearest Neighbor (NN) to the mean classification rule for classifica-
tion. We call this EFM feature extraction and NN classification
procedure the EFM-NN classifier.

In pattern recognition, a popular method, Fisher’s Linear
Discriminant (FLD), applies first PCA for dimensionality reduction
and then discriminant analysis for feature extraction. PCA is
discussed in the previous section, and discriminant analysis often
optimizes a criterion defined on the within-class and between-
class scatter matrices Sw and Sb, which are defined as follows [34]:

Sw ¼
XL

i ¼ 1

PðoiÞEfðY�MiÞðY�MiÞ
t9oig ð13Þ
Fig. 9. Some sample images from (a) the Caltech 256 dataset, (b)
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Sb ¼
XL

i ¼ 1

PðoiÞðMi�MÞðMi�MÞt ð14Þ

where PðoiÞ is a priori probability, oi represent the classes, and Mi

and M are the means of the classes and the grand mean, respec-
tively. One discriminant analysis criterion is J1: J1 ¼ trðS�1

w SbÞ,
and J1 is maximized when C contains the eigenvectors of the matrix
S�1

w Sb [34]:

S�1
w SbC¼CD ð15Þ

where C and D are the eigenvector and eigenvalue matrices of
S�1

w Sb, respectively. The discriminating features are defined by
projecting the pattern vector Y onto the eigenvectors of C:

Z ¼CtY ð16Þ

Z thus contains the discriminating features for image classi-
fication.

The FLD method, however, often leads to overfitting when
implemented in an inappropriate PCA space. To improve the general-
ization performance of the FLD method, a proper balance between
two criteria should be maintained: the energy criterion for adequate
image representation and the magnitude criterion for eliminating the
small-valued trailing eigenvalues of the within-class scatter matrix
[40]. As a result, the Enhanced Fisher Model (EFM) is developed to
improve upon the generalization performance of the FLD method
[40]. Specifically, the EFM method improves the generalization
capability of the FLD method by decomposing the FLD procedure
into a simultaneous diagonalization of the within-class and between-
class scatter matrices [40]. The simultaneous diagonalization reveals
that during whitening the eigenvalues of the within-class scatter
matrix appear in the denominator. Since the small eigenvalues tend
to encode noise [40], they cause the whitening step to fit for
misleading variations, and this leads to poor generalization perfor-
mance. To enhance performance, the EFM method preserves a proper
balance between the need that the selected eigenvalues account for
most of the spectral energy of the raw data (for representational
adequacy), and the requirement that the eigenvalues of the within-
class scatter matrix (in the reduced PCA space) are not too small
(for better generalization performance) [40].
the UIUC Sports Event dataset, and (c) the MIT Scene dataset.
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Fig. 10. The average classification performance of the proposed H-descriptor in

the I1I2I3, HSV, RGB, oRGB, DCS, YIQ, and YCbCr color spaces using the EFM-NN

classifier on the Caltech 256 dataset.
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4. Experiments

We assess our proposed descriptors for object and scene image
classification using three popular datasets, namely the Caltech 256
dataset [41], the UIUC Sports Event dataset [42], and the MIT Scene
dataset [21]. Specifically, we first assess the H-descriptor in seven
different well-known color spaces, apart from four randomly gener-
ated color spaces, and then compare the H-fusion descriptor with
other popular descriptors, such as combinations of Scale Invariant
Feature Transform (SIFT) [18,19] with other descriptors [42,24], the
Pyramid Histograms of visual Words (PHOW) descriptor [20], LBP
[10] and Pyramid Histograms of Oriented Gradients (PHOG) [13]
based features [2], Spatial Envelope [21], Color SIFT four Concentric
Circles (C4CC) [22], and other approaches such as Object Bank [23]
and Hierarchical Matching Pursuit [24].

4.1. Datasets

In this section, we briefly describe three publicly available and
fairly challenging image datasets. All of these datasets are widely
used for evaluating the performance of object and scene image
descriptors and classification methods.

4.1.1. The caltech 256 dataset

The Caltech 256 dataset [41] holds 30,607 images divided into 256
object categories and a clutter class. The images have high intra-class
variability and high object location variability [41]. Each category
contains a minimum of 80 images and a maximum of 827 images.
The mean number of images per category is 119. The images
represent a diverse set of lighting conditions, poses, backgrounds,
and sizes [41]. Images are in color, in JPEG format with only a small
percentage in grayscale. The average size of each image is 351�351
pixels. Some sample images from this dataset are shown in Fig. 9(a),
which reveals that some classes like lighthouse and minaret have
very similar visual appearance and hence their inter-class variability
is low.

4.1.2. The UIUC sports event dataset

The UIUC Sports Event dataset [42] contains eight sports event
categories: badminton (200 images), bocce (137 images), croquet
(236 images), polo (182 images), rock climbing (194 images), rowing
(250 images), sailing (190 images), and snowboarding (190 images).
The mean image size is 845�1077 pixels. Most of the images are
color jpeg images, with a small percentage in grayscale. A few sample
images from this dataset are shown in Fig. 9(b). This dataset contains
indoor and outdoor scenes and some classes like badminton and
bocce contain both. In some of the classes like bocce and croquet, the
interclass distance is very low for the image background and the
human poses provide the only information for classification.

4.1.3. The MIT scene dataset

The MIT Scene dataset [21] has 2688 images classified as eight
categories: 360 coast, 328 forest, 260 highway, 308 inside of
cities, 374 mountain, 410 open country, 292 streets, and 356 tall
buildings. All of the images are in color, in JPEG format, and the
size of each image is 256�256 pixels. There is a large variation in
light, content and angles, along with a high intra-class variation
[21]. Fig. 9(c) shows some images from this dataset.

4.2. Comparative assessment of the H-descriptor in different color

spaces

We now assess the H-descriptor in seven different color
spaces – the RGB, oRGB, HSV, YIQ, YCbCr, I1I2I3, and DCS color spaces
– for image classification performance using the three datasets. Note
Please cite this article as: S. Banerji, et al., New image descriptors b
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that for some large scale images, we resize them so that the larger
dimension is reduced to 400 pixels. To derive the H-descriptor from
each image, we first compute the 3D-LBP descriptor to produce three
new color images. We then calculate the Haar wavelet transform of
the 3D-LBP color images and the original color image. We further
compute the HOG descriptors from the Haar wavelet transform of the
component images of the color image and its 3D-LBP color images.
We finally derive the H-descriptor by concatenating the HOG
descriptors of the Haar wavelet transformed color images. We trans-
form each image in the seven color spaces and perform the same
operations to construct the seven different color H-descriptors.

We next apply PCA to reduce the dimensionality of the H-
descriptors to derive the most expressive features. For each of the
datasets, the set of training images, which do not contain any of the
images to be used for testing, are used for doing the PCA. The number
of features that are chosen after PCA depends on the size of the
training data – for training data matrices with rank less than 2000 we
choose (rank-1) PCA features, and for training data matrices with rank
greater than 2000 we choose the first 2000 PCA features. We
empirically find the number of PCA values that work best with EFM
for a particular dataset and then perform EFM to obtain the most
discriminatory features for classification. The number of features
obtained after EFM is one less than the number of categories in the
dataset. For instance, the EFM process produces a 255-dimensional
vector for the Caltech 256 dataset and a 7-dimensional vector for the
UIUC Sports Event and MIT Scene datasets. We finally use the nearest
neighbor rule for image classification on this vector.

For the Caltech 256 dataset, we use a protocol defined in [41].
On this dataset, we conduct experiments for the H-descriptors
from seven different color spaces. For each class, we use 50 images
for training and 25 images for testing. The data splits are the ones
that are provided on the Caltech website [41]. Fig. 10 shows the
detailed performance of the H-descriptors using the EFM-NN
classifier on the Caltech 256 dataset. The horizontal axis indicates
the average classification performance, which is the percentage of
correctly classified images averaged across the 256 classes and the
five runs of the experiments, and the vertical axis shows the seven
different H-descriptors in the seven color spaces. Among the
different H-descriptors, the H-descriptor in the YCbCr color space
achieves the best average classification performance of 29.7%,
followed by the H-descriptors in the YIQ, DCS, oRGB, RGB, HSV
and I1I2I3 color spaces with the average classification performance
of 29.4%, 29.1%, 29.0%, 28.9%, 27.9%, and 27.3%, respectively.

For the UIUC Sports Event dataset, we use a protocol defined in
[42], which specifies that for each class in this dataset, 70 images
are used for training and 60 images for testing. To achive more
reliable performance, we repeat our experiments five times using
ased on color, texture, shape, and wavelets for object and scene
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random splits of the data, and no overlapping occurs between the
training and the testing sets of the same split. Fig. 11 shows that
the H-descriptor in the YIQ color space is the best descriptor with
82.5% average classification performance followed in order by the
H-descriptors in the RGB, oRGB, YCbCr, DCS, HSV and I1I2I3 color
spaces with 82.3%, 81.8%, 81.7%, 81.6%, 81.6% and 80.7% success
rates, respectively. Again the horizontal axis indicates the average
classification performance and the vertical axis the H-descriptors
in the seven color spaces.
Fig. 11. The average classification performance of the proposed H-descriptor in

the I1I2I3, HSV, DCS, YCbCr, oRGB, RGB, and YIQ color spaces using the EFM-NN

classifier on the UIUC Sports Event dataset.

Fig. 12. The average classification performance of the proposed H-descriptor in

the I1I2I3, HSV, YIQ, RGB, oRGB, DCS, and YCbCr color spaces using the EFM-NN

classifier on the MIT Scene dataset.

Fig. 13. The color component images of the image from Fig. 7 in the four random
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For the MIT Scene dataset, we use 250 images from each class
for training and the rest of the images for testing. All experiments
are performed for five random splits of the data. Fig. 12 reveals
that the H-descriptor in the YCbCr color space performs the best
with 88.7% average classification rate. The H-descriptors in the
DCS, oRGB, RGB, YIQ, HSV and I1I2I3 color spaces correctly classify
on an average 88.3%, 88.2%, 88.1%, 88.0%, 87.5% and 87.1% of the
images respectively. Again the horizontal axis shows the average
classification performance and the vertical axis the H-descriptors.

4.3. Random color spaces and performance of the H-descriptor

in these color spaces

To further establish the robustness of the proposed H-descriptor
for object and scene image classification, we generate four random
color spaces and assess the classification performance using our
descriptor in these color spaces. To generate a random color space,
we create a 3�3 transformation matrix with randomly chosen
elements:

R1

R2

R3

2
64

3
75¼

W11 W12 W13

W21 W22 W23

W31 W32 W33

2
64

3
75

R

G

B

2
64

3
75 ð17Þ

where R1, R2 and R3 are the three color components in the new
random color space, and WijAð�1,1Þ are pseudorandom numbers.
The three color components in the new color space are thus given by

R1 ¼W11RþW12GþW13B

R2 ¼W21RþW22GþW23B

R3 ¼W31RþW32GþW33B ð18Þ

We next assess the classification performance of the proposed H-
descriptor in four random color spaces. In particular, we generate four
such random transformation matrices and name the resulting color
spaces random color spaces 1, 2, 3 and 4 (RCS1, RCS2, RCS3 and
RCS4). We then transform the original images from each of the three
datasets mentioned Section 4.1 into each of these color spaces and
subsequently generate the H-descriptor and use the same training
and testing framework as we use for the other seven color spaces.
Fig. 13 shows the component images of the color image shown before
in Fig. 7 in the four random color spaces used for our experiments. It
should be noted that the images shown here are just four instances of
what the components of a random color space could look like.

The results of the classification experiments are shown in Fig. 14
with the performance in the RGB color space for reference. Here, the
horizontal axis shows the H-descriptors in different color spaces, and
the different datasets while the vertical axis shows the average
classification performance. The performance of the H-descriptor in
RCS1, RCS2, RCS3 and RCS4 remains, in all cases except one, within 2%
of the performance of the H-descriptor in the RGB color space. First,
color spaces, namely RCS1, RCS2, RCS3 and RCS4 color spaces, respectively.
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these results show that the performance is random and unpredict-
able. In some cases it is more than the RGB H-descriptor perfor-
mance and in other cases it is less. This indicates that simply
transforming the color space does not increase the performance –
the exact nature of the transformation is also important. Second, the
results demonstrate that for the H-descriptors in RCS1, RCS2, RCS3
and RCS4 color spaces, the classification success rates stay reason-
ably close to the classification rate of the H-descriptor in the RGB
color space. This indicates that the proposed descriptor is robust
enough to yield stable performance under unpredictable changes in
the color component values.
4.4. Comparative assessment of the grayscale H-descriptor, the color

H-descriptors and the H-fusion descriptor

In this section, we attempt to investigate the importance of using
color information for classification, and then try to justify the fusion
of H-descriptors in the seven different color spaces to form the H-
fusion descriptor. Towards that end, we generate a grayscale H-
descriptor and comparatively evaluate its classification performance
with the RGB H-descriptor and H-fusion descriptor.

The 3D-LBP operation, which is the first step of generating the
H-descriptor, is only defined for a color image, i.e. an image with
three component planes. This is because the 3D-LBP captures the
variations in pixel intensities across the color planes thus encoding
image color information. To generate the H-descriptor for a grayscale
image, we first have to convert it to a three-plane image. In particular,
for this experiment we take each color image with three planes and
convert it to a grayscale image with just one plane by forming a
weighted sum of the R, G, and B components:

Gray¼ 0:2990Rþ0:5870Gþ0:1140B ð19Þ

Note that these are the same weights used to compute the Y
component of the YIQ color space. Then we replicate that single
plane twice to form a three-plane image again. We subsequently
generate the H-descriptor from this image and perform classification
using the EFM-NN classifier.

To create the H-fusion descriptor, the H-descriptor is com-
puted from each image in each of the seven well-defined color
spaces as described in Section 4.2. Then, after reducing the
dimensionality of each of these seven feature vectors to
minð2000,rank�1Þ PCA features, we concatenate them and form
the H-fusion descriptor. Subsequently, we further reduce the
dimensionality using PCA and extract the most discriminatory
Fig. 14. A comparison of the average classification performances of the H-descrip-

tor in the RGB color space and the four random color spaces RCS1, RCS2, RCS3, and

RCS4 on the three image datasets. Note that all the five descriptors apply the

EFM-NN classifier.
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features using EFM. Here also, the final number of features before
classification is one less than the number of categories.

Fig. 15 compares the classification performance of the grays-
cale H-descriptor, the RGB H-descriptor and the H-fusion descrip-
tor. Specifically, for the Caltech 256 dataset, the grayscale
H-descriptor yields a success rate of 24.2%. Simply including
RGB color information takes the correct classification rate up to
28.9% and the fusion of color spaces increases this by a further
4.7% to correctly classify 33.6% of the images. On the UIUC Sports
Event dataset, the grayscale H-descriptor, the RGB H-descriptor
and the H-fusion descriptor show classification rates of 77.4%,
82.3% and 86.2% respectively, thus demonstrating a significant
advantage of using color. For the MIT Scene dataset, the classifi-
cation rates obtained for the grayscale H-descriptor, the RGB
H-descriptor and the H-fusion descriptor are 83.7%, 88.1%, and
90.8% respectively. Thus the H-fusion descriptor increases classi-
fication performance by over 7% from the grayscale H-descriptor,
which is a quite high improvement for a dataset of this size and
complexity. It should be noted that for the MIT Scene dataset, 250
images from each class are used for training in these experiments.

On comparing Fig. 15 with Figs. 10–12, and 14, we find that
the classification performance of the grayscale H-descriptor is not
only less than the RGB H-descriptor, but it is also less than the
classification performance of the H-descriptor in any other color
space as well. This is in accordance with the principle behind
the 3D-LBP operation which is the first step of generating the
H-descriptor. The 3D-LBP operation has been designed specifically
to extract color information from the difference in pixel values in
the three color component images, and since this difference is
zero in a grayscale image, the H-descriptor does not perform as
well for grayscale images as it does for color images. Also, the
H-fusion descriptor performs better than the H-descriptor in any
of the individual color spaces which justifies the fusion of
H-descriptors from different color spaces.

4.5. Comparative assessment of the H-fusion descriptor and some

popular state-of-the-art image descriptors

In this section we evaluate the performance of the proposed
H-fusion descriptor on the three datasets described in Section 4.1.
We first compare our H-fusion descriptor with the popular and
robust SIFT-based Pyramid Histograms of visual Words (PHOW)
descriptor [20]. For fair comparison, both descriptors apply the
EFM-NN classifier for image classification. We then compare our
H-fusion descriptor with some other popular state-of-the-art
Fig. 15. A comparison of the average classification performances of the H-descrip-

tor in grayscale, in the RGB color space and the H-fusion descriptor on the three

image datasets. Note that all the three descriptors apply the EFM-NN classifier.
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Table 1
Comparison of the classification performance (%) of the H-fusion descriptor with

other popular methods on the UIUC Sports Event Dataset.

Method #train¼560, #test¼480

H-fusion Proposed descriptor 86.2
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descriptors using the image classification performance reported in
the published papers.

To make a comparative assessment of the H-fusion descriptor
with a popular SIFT-based feature, we generate the Pyramid Histo-
grams of visual Words (PHOW) feature vector [20] using the software
package VLFeat [43]. Here feature extraction is a three-step process.
First SIFT features are extracted from images using a fast SIFT process.
In this algorithm, SIFT descriptors are computed at points on a dense
regular grid instead of the SIFT-generated interest points [44,20].
Next, the SIFT features are subjected to K-means clustering with
K¼1000 to form a visual vocabulary. Finally, the images are spatially
tiled into 2�2 parts and the histograms of visual words are
computed for the SIFT features from each part. These four histograms
are concatenated to generate the final PHOW feature vector. For a
color image, the same process is repeated for the three color
component images and the feature vectors are concatenated. We
use the grayscale PHOW and the color PHOW feature vectors with
our EFM-NN classifier to compare the classification performance.
Please note that the SIFT process applied here is an optimized C code
that is 30–70 times faster than the conventional SIFT method [43].
In comparison, our H-descriptor is implemented using the MATLAB
code that is not optimized in terms of computational efficiency.
However, the vector generation time for the color PHOW is slightly
longer than that for the color H-descriptor. For both PHOW and H-
fusion descriptors, we apply PCA for dimensionality reduction and
the EFM-NN for classification in order to make a fair comparison.

Fig. 16 shows that our H-fusion descriptor has an image classifica-
tion performance better than both the grayscale and the color PHOW
descriptors on the Caltech 256 dataset. Note that the horizontal axis
of this graph lists the three descriptors and the three datasets while
the vertical axis shows the average classification performance as a
percentage. In particular, the H-fusion descriptor achieves the average
classification rate of 33.6%, compared to the color-PHOW descriptor
with the average classification rate of 29.9% and to the grayscale-
PHOW descriptor with the average classification rate of 25.9%,
respectively. Note that the classification performance for the Caltech
256 dataset is quite low, because this dataset has a very high intra-
class variability and in several cases the object occupies a small
portion of the full image.

Fig. 16 also displays the image classification performance on the
UIUC Sports Event dataset. Specifically, the H-fusion descriptor
correctly classifies 86.2% of the images and performs better than
both the grayscale and the color PHOW descriptors, which achieve
the average classification performance of 76.4% and 79.0%, respec-
tively. Using this UIUC Sports Event dataset, we further compare our
Fig. 16. A comparison of the average classification performances of the color-

PHOW descriptor, the grayscale-PHOW descriptor, and the proposed H-fusion

descriptor on the three image datasets. Note that all the three descriptors apply

the EFM-NN classifier.
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H-fusion descriptor with some popular state-of-the-art descriptors
and methods, such as the Hierarchical Matching Pursuit [24], Object
Bank approach [23] and variations of the popular Scale Invariant
Feature Transform (SIFT) [19] descriptor [24,42]. Note that the
performance reported here for the competing methods are from the
published papers. Table 1 shows that our H-fusion descriptor achieves
the best classification performance of 86.2% compared to HMP [24]
with classification performance of 85.7%, to SIFTþSC [24] with
classification performance of 82.7%, to Object Bank [23] with classi-
fication performance of 76.3% and to the SIFTþGGM [42] method
with classification performance of 73.4%.

On the MIT Scene dataset, we perform two sets of experiments
with our H-fusion descriptor. First we use 250 images from each class
for training and the rest of the images for testing. In this set of
experiments, the proposed H-fusion descriptor yields an average
success rate of 90.8% and exceeds the performance achieved by the
PHOW descriptors. Fig. 16 shows the image classification perfor-
mance on this dataset as well. Specifically, the H-fusion descriptor
correctly classifies 90.8% of the images and performs better than both
the grayscale and the color PHOW descriptors, which achieve the
average classification performance of 86.2% and 89.3%, respectively.
In the next set of experiments we use 100 images from each class for
training and the remaining images for testing. We further compare
our descriptor with some widely used state-of-the-art descriptors and
classification approaches such as the Spatial Envelope [21], Color SIFT
four Concentric Circles (C4CC) [22], Color Grayscale LBP Fusion (CGLF)
[2] and Pyramid Histograms of Oriented Gradients (PHOG) [13,2].
Here also, the results achieved by other researchers are reported
directly from their published work. Table 2 shows that with 250
training images, the proposed H-fusion descriptor achieves the best
classification performance of 90.8% as compared to CGLFþPHOG [2]
with a classification performance of 89.5%, to CGLF [2] with a
classification performance of 86.6% and to PHOG [13,2] with a
classification performance of 79.1%. With 100 training images per
class, our H-fusion descriptor again yields the best classification
performance of 87.7%, as compared to Color SIFT four Concentric
Circles (C4CC) [22] with a classification performance of 86.7%, to
CGLFþPHOG [2] with a classification performance of 84.3%, to Spatial
HMP [24] 85.7

SIFTþSC [24] 82.7

OB [23] 76.3

SIFTþGGM [42] 73.4

Table 2
Comparison of the classification performance (%) of the H-fusion descriptor with

other popular methods on the MIT Scene Dataset.

Method #train¼2000, #test¼688

H-fusion Proposed descriptor 90.8
CGLFþPHOG [2] 89.5

CGLF [2] 86.6

PHOG [2] 79.1

#train¼800, #test¼1888

H-fusion Proposed descriptor 87.7
C4CC [22] 86.7

CGLFþPHOG [2] 84.3

SE [21] 83.7

CGLF [2] 80
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Envelope with a classification performance of 83.7%, and to CGLF [2]
with a classification performance of 80.0%.
5. Conclusion

We have presented in this paper new image descriptors based
on color, texture, shape, and wavelets for object and scene image
classification. The contributions of the paper are manifold, and in
particular, we have first presented a new three Dimensional Local
Binary Patterns (3D-LBP) descriptor for encoding both color and
texture information of a color image. We have then proposed a
novel H-descriptor, which integrates the 3D-LBP and the HOG of
its wavelet transform, to encode color, texture, shape, and local
information. We have also comparatively assessed the H-
descriptor in seven different well known color spaces – the RGB,
the HSV, the YCbCr, the oRGB, the I1I2I3, the YIQ, and the
discriminating color spaces – for image classification perfor-
mance. Apart from these, we assessed the classification perfor-
mance of the H-descriptor in four randomly generated color
spaces and grayscale. We have finally presented a new H-fusion
descriptor by fusing the PCA features of the H-descriptors in the
seven color spaces. Experimental results using three datasets
show that the proposed new H-fusion descriptor achieves sig-
nificantly better image classification performance than the H-
descriptors in individual color spaces and grayscale. The H-fusion
descriptor also achieves better image classification performance
than other popular descriptors, such as the Scale Invariant Feature
Transform (SIFT), the Pyramid Histograms of visual Words
(PHOW), the Pyramid Histograms of Oriented Gradients (PHOG),
Spatial Envelope, Color SIFT four Concentric Circles (C4CC), Object
Bank, the Hierarchical Matching Pursuit, as well as LBP.
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