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Abstract—The problem of retrieving images from a dataset, which
are similar to a query image is an important high-level vision
problem. Different tasks define similarity based on different low-
level features like shape, color or texture. In the presented work,
we focus on the problem of retrieval of images of similarly
shaped objects, with the query being an object selected from
a query image at runtime. Towards this end, we propose a novel
shape representation and associated similarity measure, which
exploits the dimensionality reduction and feature extraction
methods of Principal Component Analysis (PCA) and Enhanced
Fisher Model (EFM). The effectiveness of this representation
is demonstrated on large-scale image datasets for the task of
object retrieval and the performance is compared to Histograms
of Oriented Gradients (HOG).
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I. INTRODUCTION AND BACKGROUND

With the enormous popularity of digital devices equipped
with cameras, along with the wide access to high speed Internet
and cloud storage, several applications based on image search
and retrieval have emerged. Such applications include aug-
mented reality, geo-localization, security and defense, educa-
tional uses, to name a few. Billions of images are uploaded and
shared over social media and web sharing platforms everyday,
giving rise to a greater need for systems that can retrieve
images similar to a query image from a dataset. Traditional
approaches of content-based image retrieval are based upon
low level cues such as shape, color and texture features. In
this paper, we are trying to address the problem of retrieving
images that have similarity in the shapes. Specifically, we
select a window from a query image surrounding an object of
interest and want to be able to retrieve similarly shaped objects
from other images in the dataset, which are taken “in the wild”,
i.e., user generated content without any control. Towards that
end, we investigate and propose a novel representation and
retrieval technique that is based on shape features, dimension-
ality reduction and discriminant analysis and is robust to the
slight changes in the window object selection.

The Histograms of Oriented Gradients (HOG) feature vec-
tor [1], originally proposed for pedestrian detection, is very
popular among researchers for shape matching. It has success-
fully been combined with other techniques [2] and fused with
other descriptors [3] for scene image classification. HOG has
also given rise to other extremely successful object detection
techniques, such as Deformable Part Models (DPM) [4].
More complicated descriptors [5] have been used for image

Figure 1. The proposed image representation aims at enhancing the HOG-
based retrieval set by training an EFM-based classifier. The method is
described in more detail in Section II

retrieval with reasonable success. However, such methods are
time consuming and more processor-intensive as compared to
simple HOG matching. In recent years, handcrafted features
have declined in popularity due to the success of deep neural
networks in object recognition [6]–[8], but such methods are
not without their drawbacks. Deep neural networks require a
lot of processor time and run better on specialized hardware.
They also require far greater number of training images than
are available in a small or medium-sized dataset. For these
reasons, enhancing simple handcrafted features like HOG can
be effective for solving small-scale retrieval problems more
effectively than more complex methods.

Simple HOG matching, however, poses significant chal-
lenges in effective image retrieval due to the fact that the
apparent shape of the query object may change considerably



Figure 2. Auto-generation of offset windows to be used as positive training
samples during querying. The window dimensions and offsets shown are only
representative.

between images due to differences in lighting, viewing angle,
scale and occlusion. This is particularly true for content
generated by users in the wild. In effect, every query image
is an exemplar of its own class and a retrieval system must
be trained to treat it that way. In [9], this idea is handled
using a Support Vector Machine (SVM) [10]. Instead of an
SVM, here we introduce the novel idea of enhancing the
HOG features by the EFM process [11] because it produces a
low-dimensional representation, which is important from the
computational aspect. Principal Component Analysis (PCA)
has been widely used to perform dimensionality reduction for
image indexing and retrieval [11]. The Enhanced Fisher Model
(EFM) feature extraction method has achieved good success
rates for the task of image classification and retrieval [3]. In
the proposed method, which is represented schematically in
Figure 1, we show this method to be effective in isolating the
query object from the background.

The rest of this paper is organized as follows. Section II
outlines in detail the method proposed in this paper. The
datasets used and the experiments performed are detailed in
Section III. Finally, we list our conclusions and directions for
future research in Section IV.

II. PROPOSED METHOD

A. Window Generation

We start with generating objectness windows from each
image. We use the method used by [12], which designs an ob-
jectness measure and explicitly trains it to distinguish windows
containing an object from background windows. This method
uses five objectness cues - namely, multi-scale saliency, color
contrast, edge density, superpixels straddling, and location and
size - and combines them in a Bayesian framework. We select
the 25 highest-scoring windows from each image in our dataset
and extract HOG features from these windows.

While testing our system, the user generates a window
on the query image manually roughly enclosing the object
of interest. Then, we automatically select 10 slightly offset
versions of this window. Eight of these are generated by
moving the user-selected window to the right, left, up, down,

up-right, up-left, down-right and down-left by 5%, respectively.
Two windows are generated by expanding and contracting the
user’s selection by 5%, respectively. Features are now extracted
from these 10 as well as the original window for further
processing. This process is represented in Figure 2.

B. HOG

The idea of HOG rests on the observation that local features
such as object appearance and shape can often be characterized
well by the distribution of local intensity gradients in the
image [1]. HOG features are derived from an image based
on a series of normalized local histograms of image gradient
orientations in a dense grid [1]. The final HOG descriptors are
formed by concatenating the normalized histograms from all
the blocks into a single vector.

Figure 3 demonstrates the formation of the HOG vector
for a window selected from an image. We use the HOG
implementation in [13] for both generating the descriptors and
rendering the visualizations used in this paper.

C. Dimensionality Reduction

PCA, which is the optimal feature extraction method in the
sense of the mean-square-error, derives the most expressive
features for signal and image representation. Specifically, let
X ∈ R

N be a random vector whose covariance matrix is
defined as follows [14]:

S = E{[X − E(X )][X − E(X )]t} (1)

where E(·) represents expectation and t the transpose opera-
tion. The covariance matrix S is factorized as follows [14]:

S = ΦΛΦt (2)

where Φ = [φ1φ2 · · ·φN ] is an orthogonal eigenvector matrix
and

Λ = diag{λ1, λ2, . . . , λN}

Figure 3. Formation of the HOG descriptor from a query image window.



Figure 4. The positive and negative weights learned from the HOG features
through the EFM discriminative feature extraction process.

a diagonal eigenvalue matrix with diagonal elements in de-
creasing order. An important application of PCA is the extrac-
tion of the most expressive features of X . Towards that end, we
define a new vector Y: Y = P tX , where P = [φ1φ2 . . . φK ],
and K < N . The most expressive features of X thus define
the new vector Y ∈ R

K , which consists of the most significant
principal components.

D. EFM

The features obtained after dimensionality reduction by
PCA as discussed in Section II-C are the most expressive
features for representation. However, they are not the optimum
features for classification. Fisher’s Linear Discriminant (FLD),
a popular method in pattern recognition, first applies PCA
for dimensionality reduction and then discriminant analysis
for feature extraction. Discriminant analysis often optimizes
a criterion based on the within-class and between-class scatter
matrices Sw and Sb, which are defined as follows [14]:

Sw =

L∑

i=1

P (ωi)E{(Y −Mi)(Y −Mi)
t|ωi} (3)

Sb =

L∑

i=1

P (ωi)(Mi −M)(Mi −M)t (4)

where P (ωi) is a priori probability, ωi represent the classes,
and Mi and M are the means of the classes and the grand
mean, respectively. One discriminant analysis criterion is J1:
J1 = tr(S−1

w Sb), and J1 is maximized when Ψ contains the
eigenvectors of the matrix S−1

w
Sb [14]:

S−1

w
SbΨ = Ψ∆ (5)

where Ψ,∆ are the eigenvector and eigenvalue matrices of
S−1

w Sb, respectively. The discriminating features are defined
by projecting the pattern vector Y onto the eigenvectors of Ψ:

Z = ΨtY (6)

Z thus contains the discriminating features for image classifi-
cation.

The FLD method, however, often leads to overfitting when
implemented in an inappropriate PCA space. To improve
the generalization performance of the FLD method, a proper
balance between two criteria should be maintained: the energy
criterion for adequate image representation and the magnitude
criterion for eliminating the small-valued trailing eigenvalues
of the within-class scatter matrix. The EFM improves the
generalization capability of the FLD method by decomposing
the FLD procedure into a simultaneous diagonalization of
the within-class and between-class scatter matrices [11]. The
simultaneous diagonalization demonstrates that during whiten-
ing the eigenvalues of the within-class scatter matrix appear
in the denominator. As shown by [11], the small eigenvalues
tend to encode noise, and they cause the whitening step to
fit for misleading variations, leading to poor generalization
performance. To enhance performance, the EFM method pre-
serves a proper balance between the need that the selected
eigenvalues account for most of the spectral energy of the
raw data (for representational adequacy), and the requirement
that the eigenvalues of the within-class scatter matrix (in the
reduced PCA space) are not too small (for better generalization
performance). For this work the number of eigenvalues was
empirically chosen.

E. Training

The EFM feature extraction method uses positive and neg-
ative training samples to find the most discriminative features.

(a)

(b)

Figure 5. Some sample query images from (a) the Oxford Buildings dataset,
and (b) the PASCAL VOC 2012 dataset.



In our setting, there is only one query image to be used as a
positive sample. This is similar to the Exemplar-SVM training
scenario used by [9], but to make the training more robust to
selection error by the user and to prevent overfitting, we use
11 windows instead of just the one selected by the user as
described in Section II-A.

We rank all objectness windows from all images in the
dataset in terms of Euclidean distance in the HOG space from
the original query window. For the negative training samples,
we use 110 windows that are ranked low, i.e., are very distant
in the HOG space. Experimentally, we found that the last
ranked windows are not very good candidates for negative
training samples, since they are often outlier windows that
contain large blank areas like the sky. Instead, windows that
have a rank 1000 to 5000 perform well. We also tried training
the system with different numbers of negative samples and
found a number close to 100 performs the best. These windows
are mostly background regions like ground and vegetation. The
positive and negative weights for the HOG features learned by
this method can be seen in Figure 4.

For an n-class problem, the EFM process for discrimina-
tory feature extraction reduces the dimensionality of any vector
to n − 1. Since our problem is a two-class problem, EFM
produces one feature per window. We compute the score of
each window by finding the absolute value of the difference
between the window EFM feature and the average positive
training set EFM feature. Ranking the images by their best-
scoring windows gives us the retrieval set.

III. EXPERIMENTS

A. Dataset

We have used the two datasets shown in Figure 5 for
this work. First, we evaluate the retrieval performance of the
proposed method on images gathered in the wild. For this,
we use the Oxford Buildings dataset [15], which consists of
5062 images of 11 different Oxford landmarks and distractors
collected from Flickr [16]. 55 images from this dataset were
used as queries for testing our retrieval system. Flickr images
are completely user-generated, which means there is a great
variation in camera type, camera angle, scale and lighting

Figure 6. The mean landmark-identification performance by using the K-
nearest neighbors method with varying K.

TABLE I. THE NUMBER OF IMAGES CONTAINING EACH LANDMARK IN

THE OXFORD BUILDINGS DATASET

Landmark Good OK Junk

All Souls Oxford 24 54 33

Ashmolean Oxford 12 13 6

Balliol Oxford 5 7 6

Bodleian Oxford 13 11 6

Christ Church Oxford 51 27 55

Cornmarket Oxford 5 4 4

Hertford Oxford 35 19 7

Keble Oxford 6 1 4

Magdalen Oxford 13 41 49

Pitt Rivers Oxford 3 3 2

Radcliffe Camera Oxford 105 116 127

conditions. This makes this dataset very difficult for image
retrieval in general and landmark-identification in particular
(the results of which are shown in Figure 6). Figure 5(a) shows
some of our query images from this dataset. For each query, the
images that contain the query landmark are further classified
into good, OK and junk categories, with progressively poorer
views of the query landmark. Table I shows the landmark-wise
distribution of good, OK and junk images in this dataset.

We also test retrieval performance on the PASCAL VOC
2012 dataset [17]. We only use the training/validation data
from this dataset to test our retrieval algorithm. This data
consists of 17,125 images from 20 classes. We create five
random test sets of size 100 each from the original image set
and perform a five-fold cross-validation on all our experiments.
Figure 5(b) shows some images from this dataset.

B. The Retrieval Task

The proposed image representation is tested on two differ-
ent tasks the first of which is retrieval. Here, an image is used
as a query to retrieve similar scenes from the dataset. For this,
the user selects a rectangular region of interest from the query
image, and HOG features from this rectangular window is
matched with the 25 highest scoring objectness windows from
each image in the database, both in the raw HOG space and
after the proposed training and feature extraction procedure.
The closest matches based on Euclidean distance are retrieved

Figure 7. Mean retrieval accuracy (measured by the presence of a relevant
image in the top 10 retrieved images).



Figure 8. Comparison of image retrieval results for HOG and the proposed EFM-HOG. Images 1, 2 and 3 are from the Oxford Buildings dataset. Images
4, 5 and 6 are from the PASCAL VOC 2012 dataset. In each case, (a) shows top ten images retrieved by HOG, and (b) shows top ten images retrieved by
EFM-HOG. Red rectangles indicate images that do not represent the same landmark or object class as the query.

in order of their distance from the query window. Finding
an instance of the query in the top 10 retrieved images is
considered a success. Figure 7 compares the retrieval success
rates of the HOG descriptor and the proposed EFM-HOG
representation. Specifically, in 41 cases out of 55 queries in
the Oxford buildings dataset, the query landmark is retrieved
within top 10 images by the proposed method, as opposed to
40 by HOG. This is actually a very small difference, but this
can be explained by the nature of this dataset. For all landmark
query images in this dataset, there are at least some images
in the dataset that show clear views of the landmarks with
no occlusions. HOG is actually pretty effective at retrieving
these images. To actually understand the effectiveness of the
proposed method, we repeat this experiment with just the junk
files for each query. In this experiment, we find that the HOG
method retrieves a relevant image in the top 10 only once
out of all 55 queries, while the proposed EFM-HOG method
achieves this 5 times out of the 55.

For PASCAL VOC, the experiment is performed on all
five random splits and the average success rate is found to be
65.2% for EFM-HOG as compared to 36.8% for HOG. We

also find that the conventional HOG performs quite well for
clearly segmented objects, such as airplanes in the sky, but
the EFM-HOG performs much better for images of objects
with a cluttered background. Some HOG and EFM-HOG
retrieval results are shown in Figure 8. Figure 9 shows another
interesting aspect of our retrieval technique. Here, we show the
image means of the first 100 windows retrieved by both HOG
and EFM-HOG on PASCAL VOC. The figure shows that the
EFM-HOG means contain clearer shapes, which indicates that
the EFM-HOG retrieves more similar shapes than HOG, even
when the results are irrelevant to the query.

C. The Landmark-identification Task

Some images in our Oxford Buildings dataset belong to
one of the eleven landmarks listed in Table I, the others
belong to none of the classes and are used as distractors. The
second experiment that we performed with the new EFM-HOG
descriptor was a landmark-identification task where the system
tries to label each query image with its correct landmark
label. This is done by retrieving relevant images in a manner
similar to the retrieval task, and then performing the K-



Figure 9. The means of the top 100 retrieved windows for HOG and EFM-HOG for 4 query images from the PASCAL VOC 2012 dataset.

nearest neighbors classification on the top K results. The same
experiments are repeated for the conventional HOG descriptor
as well. As can be seen from Figure 6, the proposed EFM-HOG
outperforms HOG by a significant margin for nearly all values
of K between 1 and 35. The highest EFM-HOG landmark-
recognition performance of 65.5% is achieved at K = 3.

IV. CONCLUSION

We have presented in this paper a new image descriptor
based on HOG and discriminant analysis that uses a novel
approach to fetch scenes with similar shaped objects. We
have conducted experiments using over 5, 000 images from
the Oxford Buildings dataset and over 17, 000 images from
the PASCAL VOC 2012 dataset and concluded the following:
(i) HOG features are not always sufficiently discriminative
to perform meaningful retrieval, (ii) the discriminative nature
of HOG features can be improved with the EFM for feature
extraction and dimensionality reduction, and (iii) HOG features
perform well for clearly isolated objects with little background
clutter, but the EFM-HOG performs better for real-world
images with cluttered backgrounds.

We intend to use this method with more datasets in the
future, so that a more thorough understanding of its strengths
and weaknesses can be achieved.
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