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Abstract—The Histograms of Oriented Gradients (HOG) de-
scriptor represents shape information by storing the local gra-
dients in an image. The Haar wavelet transform is a simple yet
powerful technique that can separately enhance the horizontal
and vertical local features in an image. In this paper, we enhance
the HOG descriptor by subjecting the image to the Haar wavelet
transform and then computing HOG from the result in a manner
that enriches the shape information encoded in the descriptor.
First, we define the novel HaarHOG descriptor for grayscale
images and extend this idea for color images. Second, we compare
the image recognition performance of the HaarHOG descriptor
with the traditional HOG descriptor in four different color
spaces and grayscale. Finally, we compare the image classification
performance of the HaarHOG descriptor with some popular
descriptors used by other researchers on four grand challenge
datasets.

Index Terms—HaarHOG descriptor, Haar wavelets, His-
tograms of Oriented Gradients descriptor, shape descriptor,
object and scene image classification

I. INTRODUCTION

The field of content-based image classification, search and
retrieval has expanded greatly in recent years with millions of
color images being stored and shared over the Internet each
day. Creation of the feature descriptor is one of the first steps
in the image search and classification process and this paper
introduces a novel descriptor for grayscale as well as color
images.

Shape and high-frequency local information contribute
heavily to object and scene image recognition, and hence, de-
scriptors based on such features are frequently used for image
classification. The Histograms of Oriented Gradients (HOG)
descriptor [1], which represents an image by histograms of
the slopes of the object edges in an image, stores information
about the shapes contained in the image. As a result, HOG
has become a popular descriptor for object tracking in images
and videos, and content based image retrieval. Wavelets are
known to selectively enhance high frequency local information
in selected orientations. That is why wavelets, such as the
Haar wavelets have been widely applied for object detection
in images [2], [3].

The human visual system often uses color information for
object and scene image classification. In fact, color images
contain much more discriminative information than grayscale
images and have been shown to perform better than grayscale
images for image classification tasks [4], [5], [6], [7], [8]. The
descriptors derived from different color spaces often exhibit

different properties, among which are high discriminative
power and relative stability over the changes in photographic
conditions such as varying illumination.

This paper introduces a novel image descriptor based on
shape and local high-frequency features from an image, and
then extends it to include the benefits of using multiple color
spaces. Specifically, first, a new HaarHOG feature vector is
defined that extracts shape as well as other local features from
a grayscale image by combining the Haar wavelet transform
with the Histograms of Oriented Gradients (HOG). This is
intuitively based on the idea that scene recognition is often
based on the presence of certain objects in a scene and hence
the Haar wavelets and HOG would both help scene recognition.
Next, we extend the definition of the new descriptor for use
in color images.

To assess the classification performance of the proposed
descriptor, a Support Vector Machine (SVM) classifier with
a linear kernel is used on several widely used and publicly
available image datasets. In these experiments, it is shown
to achieve a significantly better classification performance
than the conventional HOG descriptor, as well as some other
popular image descriptors, such as Scale Invariant Feature
Transform (SIFT) based methods, Spatial Envelope (SE), Ob-
ject Bank (OB), as well as Local Binary Patterns (LBP).

This paper is organized in the following manner. Section II
discusses the background work by other researchers that have
been used in this paper. Section III explains the new HaarHOG
descriptors introduced here. Section IV evaluates the perfor-
mance of the HaarHOG descriptor on four different image
datasets and compares the performance with the HOG de-
scriptor and some other popular descriptors. Finally, Section V
summarizes the contributions and findings of this paper.

Fig. 1. A grayscale image and its Haar wavelet transform.



Fig. 2. A grayscale image and the formation of the HOG descriptor.

II. BACKGROUND

This section first discusses the theoretical background work
related to the concepts used in this work, and also discusses
the different color spaces in which our new descriptor is tested.

A. Haar Wavelet Transform

The 2D Haar wavelet transform is defined as the projection
of an image onto the 2D Haar basis functions, which are
formed by the tensor product of the one dimensional Haar
scaling and wavelet functions [9], [10]. The Haar scaling
function ϕ(x) is defined below [9], [11]:

ϕ(x) =
{

1, 0 ≤ x < 1
0, otherwise (1)

A family of functions can be generated from the basic scaling
function by scaling and translation [9], [11]:

ϕi, j(x) = 2i/2ϕ(2ix− j) (2)

As a result, the scaling functions ϕi, j(x) can span the vector
spaces V i, which are nested as follows: V 0 ⊂ V 1 ⊂ V 2 ⊂ ·· ·
[12].

The Haar wavelet function ψ(x) is defined as follows [9],
[11]:

ψ(x) =

 1, 0 ≤ x < 1/2
−1, 1/2 ≤ x < 1
0, otherwise

(3)

The Haar wavelets are generated from the mother wavelet by
scaling and translation [9], [11]:

ψi, j(x) = 2i/2ψ(2ix− j) (4)

The Haar wavelets ψi, j(x) span the vector space W i, which is
the orthogonal complement of V i in V i+1: V i+1 =V i⊕W i [9],
[11]. The 2D Haar basis functions are the tensor product of
the one dimensional scaling and wavelet functions [10].

Figure 1 shows a grayscale image of a Mandarin duck and
its Haar wavelet transformed image. The right side of the
figure displays an enlargement of the four quadrants of the
Haar wavelet transformed image which shows that different
sub-images enhance high-frequency local features in different
orientations.

B. Histograms of Oriented Gradients (HOG)

The idea of Histograms of Oriented Gradients (HOG) rests
on the observation that local features such as object appearance
and shape can often be characterized well by the distribution
of local intensity gradients in the image [1]. HOG features are
derived from an image based on a series of normalized local
histograms of image gradient orientations in a dense grid [1],
[13].

Figure 2 demonstrates the formation of the HOG vector
for a grayscale image. The image of a duck at the top right is
the original grayscale image. The first step is the calculation of
the gradient magnitudes at every pixel. The gradient magnitude
image is shown in the middle figure of the top row. Next, the
image window is divided into a number of blocks as shown
in the last image in the first row of Figure 2. In the original
implementation by [1], dividing the image into 3×3 blocks
was found to be optimal for pedestrian detection. For our
experiments, however, we found the classification performance
increasing for 5×5 blocks and so we used 5×5 blocks for
our implementation. Next, the orientation of each pixel in
each block is put in one of 10 orientation bins weighted by
its magnitude and thus a weighted histogram is formed for
each block of cells. There is an overlap of half the block
size between consecutive blocks to increase accuracy. Finally,
the histograms from the individual cells are normalized and
concatenated to form the HOG vector. This whole operation
of forming histograms and concatenating them is shown in the
bottom row of Figure 2.

C. Color Spaces

We now briefly review the four color spaces which we
have used in this work for assessing the performance of the
proposed HaarHOG descriptor. The RGB color space is the
common tristimulus space used for representing color images
on a computer. It represents an image as three component
images that represent the intensities of the red, green, and
blue primary colors. Other color spaces can be derived from
the RGB color space by linear or nonlinear transformations.

Fig. 3. An RGB color image, its grayscale image, and the color component
images in the RGB, HSV, YCbCr and oRGB color spaces, respectively.



In this paper, we are using three very popular color spaces in
addition to the RGB color space: the HSV color space [14],
the YCbCr color space [15] and the recently defined oRGB
color space [16].

The HSV (hue, saturation, and value) color space is based
on the way humans perceive color. Hue and saturation define
chrominance, while intensity or value specifies luminance [15].
The HSV color space is derived nonlinearly from the RGB
color space [14]. The other two color spaces are derived
from the RGB color space using linear transformations. The
YCbCr color space was originally developed for digital video
standard and television transmissions. In the YCbCr color
space, the image is split into luminance (Y), chrominance-
blue (Cb) and chrominance-red (Cr) components [15]. The
recently introduced oRGB color space [16] has three channels
L, C1 and C2. The primaries of this color model are based
on the three fundamental psychological opponent axes: white-
black, red-green, and yellow-blue. In the oRGB color space,
the color information is contained in the C1 and C2 channels.
The value of C1 lies within [-1, 1] and the value of C2
lies within [-0.8660, 0.8660]. The L channel contains the
luminance information and its value ranges within [0, 1].

Figure 3 shows a color image, its grayscale image, and its
color component images in the RGB, HSV, YCbCr and oRGB
color spaces, respectively.

D. The Classifier: Support Vector Machine

We use a Support Vector Machine (SVM) classifier with a
linear kernel for the classification task. SVM is a particular re-
alization of statistical learning theory. The approach described
by SVM, known as structural risk minimization, minimizes
the risk functional in terms of both the empirical risk and the
confidence interval [17]. SVM is built from two ideas: (i) a
nonlinear mapping of the input space to a high-dimensional
feature space, and (ii) designing the optimal hyperplane in
terms of the maximal margin between the patterns of the two
classes in the feature space. SVM is very popular and has
been applied extensively for pattern classification, regression,
and density estimation since it displays a good generalization
performance.

For our experiments, we trained an SVM with a linear
kernel independently for each class (one-vs-all classification).
A similar configuration has been successfully used by other
researchers like [18] in recent works. The SVM implementa-
tion used is the one that is distributed with the VlFeat package
[19].

III. THE NOVEL HAARHOG DESCRIPTOR FOR IMAGE
CLASSIFICATION

This section first introduces the new HaarHOG descriptor
for grayscale images as an improvement over HOG and
explains the proposed technique in detail. Then it extends this
concept to color images to define the new color HaarHOG
descriptor.

Fig. 4. The formation of (a) the grayscale HaarHOG feature vector from a
grayscale image and (b) the color HaarHOG feature vector from a color image.
In both cases, the four quadrants of the Haar wavelet transformed image is
shown separated for clarity. The HOG operation shown at the extreme right
of (b) represents one HOG operation on each of the 12 images generated in
the previous step.

A. The Novel Grayscale HaarHOG Descriptor

The motivation for the proposed new descriptor, the
HaarHOG descriptor, is based on enhancing useful and im-
portant local high-frequency features before extracting shape
for object and scene image classification. Towards that end,
the Haar wavelet transform of a grayscale image is first
computed. This process divides the grayscale image into four
grayscale sub-images. One of these sub-images contains the
low frequency information from the original image and the
other three contain the high frequency information in different
orientations. Each of these sub-images are one-fourth the size
of the original image.

To generate the new HaarHOG descriptor, the HOG is
next calculated the four quadrants of a Haar wavelet trans-
formed image and then concatenated to get the HaarHOG
descriptor. The size of the grayscale HaarHOG feature vector
thus obtained is four times the size of one HOG vector. For
the parameters used in our implementation, the size of the
grayscale HaarHOG feature vector is 4×5×5×10 i.e. 1000.
This method is explained in Figure 4(a).

B. The Innovative Color HaarHOG Descriptor

The process described above is applicable only to grayscale
images. Since color images contain more discriminatory infor-
mation than grayscale images, we can incorporate this infor-
mation into our descriptor by calculating a HaarHOG vector
from each color component image, and then concatenating
the three vectors. Figure 4(b) shows this method. Specifically,



(a)

(b)

(c)

(d)
Fig. 5. Some sample images from (a) the Caltech 256 dataset, (b) the UIUC
Sports Event dataset, (c) the MIT Scene dataset, and (d) the Fifteen Scene
Categories dataset.

the color image on the upper left of the figure undergoes the
Haar wavelet transformation on each of its color component
images to generate a color Haar transformed image with four
sub-images each. The four quadrants of these Haar wavelet
transformed images are shown at the upper right of the figure.
These twelve images, i.e. the three component images from the
four quadrants of the color Haar transformed image, undergo
the HOG operation, and their vectors are concatenated to form
the innovative color HaarHOG descriptor. The color image
may be converted to the HSV, the YCbCr or the oRGB color
space from the RGB color space to obtain the color HaarHOG
descriptor in the desired color space as the end result. The
length of the color HaarHOG feature vector is 3000.

IV. EXPERIMENTS

In this section we first introduce the datasets used for testing
our new image descriptors and then do a comparative assess-
ment of the classification performance of the HOG and the
HaarHOG descriptors. Finally we compare the classification
performance of the HaarHOG descriptor with some popular
image descriptors used by other researchers.

A. Datasets Used

This section briefly introduces the four publicly available
and widely used image datasets used for assessing the classi-
fication performance of our descriptor.

1) The Caltech 256 Dataset: The Caltech 256 dataset [20]
holds 30,607 images divided into 256 object categories and
a clutter class. Each category contains a minimum of 80 and
a maximum of 827 images. The images, which are mostly
color, represent a diverse set of lighting conditions, poses,
backgrounds, and sizes [20]. The average size of each image

is 351 × 351 pixels. Some sample images from this dataset
are shown in Figure 5(a).

2) The UIUC Sports Event Dataset: The UIUC Sports
Event dataset [21] contains eight sports event categories:
badminton (200 images), bocce (137 images), croquet (236
images), polo (182 images), rock climbing (194 images),
rowing (250 images), sailing (190 images), and snowboarding
(190 images). The mean image size is 845 × 1077 pixels. Most
of the images are color JPEG images, with a small percentage
in grayscale. A few sample images from this dataset are shown
in Figure 5(b). This dataset contains indoor and outdoor scenes
and some classes like badminton and bocce contain both.

3) The MIT Scene Dataset: The MIT Scene dataset [22] has
2,688 images classified as eight scene categories: 360 coast,
328 forest, 260 highway, 308 inside of cities, 374 mountain,
410 open country, 292 streets, and 356 tall buildings. All of the
images are in color and in JPEG format, and the size of each
image is 256 × 256 pixels. There is a large variation in light,
content and angles, along with a high intra-class variation [22].
Figure 5(c) shows some images from this dataset.

4) The Fifteen Scene Categories Dataset: The Fifteen
Scene Categories dataset [23] is composed of 15 scene cat-
egories: thirteen were provided by [24], eight of which were
originally collected by [22] as the MIT Scene dataset, and two
were collected by [23]. Each category has 200 to 400 images,
most of which are grayscale. Figure 5(d) shows one image
each from the newer seven classes of this dataset.

B. Comparative Assessment of the HOG and HaarHOG De-
scriptors on the Different Datasets

In this section, we make a comparative assessment of the
HOG and our proposed HaarHOG descriptors in four different
color spaces – RGB, HSV, oRGB, and YCbCr color spaces, as
well as in grayscale, using the four datasets described earlier
to evaluate classification performance. Note that we do not
propose the new descriptor as a stand-alone state-of-the-art
solution for different image classification problems, but as an
improvement over HOG.

From the Caltech 256 dataset, we use 50 images per class
for training and 25 images per class for testing. The experiment
is done for five random splits of the data with no overlap
between training and testing sets of the same split. As can be
seen in Figure 6(a), the HaarHOG significantly outperforms
the HOG in all four color spaces as well as in grayscale.
The horizontal axis shows the proposed descriptors in four
different color spaces and in grayscale, and the vertical axis
denotes the mean average classification performance, which is
the percentage of correctly classified images averaged across
all the 256 classes and five runs of experiments.

For the UIUC Sports Event dataset, we use 70 images from
each class for training and 60 for testing. Figure 6(b) shows
the mean average classification performance obtained over five
random splits of the data. Here also, the HaarHOG outperforms
the HOG by a big margin that varies from about 3% to over
7%. Indeed, on this dataset the HaarHOG not only outperforms



Fig. 6. (a), (b), (c) show the mean average classification performance of the HOG and proposed HaarHOG descriptors in the grayscale, RGB, HSV, oRGB,
and YCbCr color spaces using the SVM classifier with linear kernel on the Caltech 256 dataset, the UIUC Sports Event dataset, and the MIT Scene dataset
respectively. (d) shows the comparative mean average classification performance of the grayscale HOG and grayscale HaarHOG descriptors on the 15 categories
of the Fifteen Scene Categories dataset.

the HOG, but also provides a decent classification performance
by itself.

From both the MIT Scene dataset and the Fifteen Scene
Categories dataset we use five random splits of 100 images
per class for training, and the rest of the images for testing.
Again, the HaarHOG produces decent classification perfor-
mance on its own apart from beating the HOG by a fair margin.
Figure 6(c) displays these results on the MIT Scene dataset.
Here also, the horizontal axis shows the different descriptors
in the four color spaces and in grayscale, and the vertical
axis shows the mean average classification performance. The
highest classification rate for this dataset is as high as 89.3%
for the HaarHOG descriptor in the YCbCr color space which
is a very respectable value for a dataset of this size and com-

plexity. On the Fifteen Scene Categories dataset we conduct
experiments only in grayscale. The overall success rate for
HOG on this dataset is 60.9% and for HaarHOG it is 70.5%.
In Figure 6(d), we display the category wise classification rates
of the grayscale HOG and HaarHOG descriptors for all 15
categories of this dataset. Here, the horizontal axis reveals
the fifteen scene categories, and the vertical axis displays the
mean average classification performance. The HaarHOG here
is shown to better the HOG classification performance in each
scene category.

While the HaarHOG descriptor is proposed as an improve-
ment over HOG, it shows some good classification perfor-
mance even when used alone on some of these four datasets.
We compare the classification performance of the proposed



TABLE I
COMPARISON OF THE CLASSIFICATION PERFORMANCE (%) OF THE

PROPOSED HAARHOG DESCRIPTOR WITH OTHER POPULAR METHODS
ON THE UIUC SPORTS EVENT AND MIT SCENE DATASETS

Descriptor UIUC MIT
Performance (%) Performance (%)

SIFT+GGM [21] 73.4 -
OB [25] 76.3 -
CA-TM [26] 78.0 -
LBP - 77.9
CGLF [5] - 80.0
SE [22] - 83.7
CGLF+PHOG [5] - 84.3
C4CC [27] - 86.7
HOG 76.3 85.8
HaarHOG (proposed) 82.2 89.3

HaarHOG descriptor with some popular image classification
techniques used by other researchers. The detailed comparison
is shown in Table I. The first column contains the different
descriptors used for classification, the second column contains
the classification performance in the UIUC sports event dataset
and the third column shows the classification performance in
the MIT Scene dataset. As can be seen from this table, the
proposed HaarHOG descriptor (shown in bold on the bottom
row) yields the best classification performance on both these
datasets. It should be noted that the results of other researchers
are reported directly from their published work.

V. CONCLUSION

We have presented in this paper a new image descriptor
based on shape and local features for object and scene image
classification that improves upon the popular HOG descriptor.
We have first presented a new HaarHOG descriptor for a
grayscale image. We then extended this definition for color
images. We have also comparatively assessed the HaarHOG
descriptor in four different color spaces — the RGB, the
HSV, the YCbCr, and the oRGB — for image classification
performance. Experimental results using four datasets show
that the proposed new HaarHOG descriptor not only achieves
significantly better image classification performance than the
conventional HOG descriptor, but can also beat other popular
descriptors, such as the Scale Invariant Feature Transform
(SIFT), Spatial Envelope, Color SIFT four Concentric Circles
(C4CC), Object Bank (OB), Context Aware Topic Model (CA-
TM), as well as LBP on some popular scene image datasets.
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